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Abstract 
The number of deployed Internet of Things (IoT) devices is con-
tinuously increasing. While Mixed Reality (MR) allows hands-free 
interaction, creating MR User Interfaces (UI) for each IoT device 
is challenging, as often a separate interface has to be designed for 
each individual device. Additionally, approaches for automatic MR 
UI generation often still require manual developer intervention. 
To address these issues, we propose the JUIC-IoT system, which 
automatically assembles Just-in-Time MR UIs for IoT devices based 
on the machine-understandable format W3C Web of Things Thing 
Description (TD). JUIC-IoT detects an IoT device with object recog-
nition, uses its TD to prompt an LLM for automatically selecting 
appropriate UI components, and then assembles a UI for interact-
ing with the device. Our evaluation of JUIC-IoT shows us that the 
choice of LLM and the TD of a device are more crucial than the for-
mulation of the input prompts for obtaining a usable UI. JUIC-IoT 
represents a step towards dynamic UI generation, thereby enabling 
intuitive interactions with IoT devices. 

CCS Concepts 
• Human-centered computing → Mixed / augmented reality; 
Ubiquitous computing. 
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1 Introduction 
The Internet of Things (IoT) is nowadays widely adopted in several 
sectors, from smart homes equipped with smart appliances, lighting, 
and security systems [4, 27, 33] to smart cities capable of managing 
traffic and monitoring environmental conditions [5, 11, 16, 29]. In 
agriculture, the IoT supports farming by monitoring soil, water, and 
crop conditions [3, 8, 21], and in industry, IoT devices are used in 
tasks such as real-time monitoring, predictive maintenance, and 
production optimization [2, 7, 20, 24]. However, it is not always 
easy to interact with IoT devices, since they are vastly heteroge-
neous, locking end users in vendor specific technologies, including 
UIs, which leads to common scenarios in which a person requires 
different applications to interact with each IoT device in a smart 
environment. To tackle the heterogeneity of IoT devices, the Web of 
Things (WoT) [13] was proposed, and Web standards [40] have been 
created to provide uniform descriptions of the devices, including 
their capabilities; allowing for interoperability among devices, and 
facilitating interacting with them. 

Mixed Reality (MR) [31] provides a hands-free way for inter-
acting with IoT devices. However, traditional UI development is 
time-consuming and labor intensive [23], which is not ideal when 
navigating from one IoT environment to another. Hence, in this 
work, we explore using generative artificial intelligence (GenAI) 
to automate the creation of Just-in-Time (JIT) UIs for interacting 
with IoT devices using MR. JIT refers to the creation of a UI at the 
exact moment a user interacts with an object, allowing for a more 
tailored experience. As functionalities of IoT devices may dynami-
cally change, e.g., based on user roles or environmental changes, a 
JIT-approach enables highly adaptable and contextually relevant 
interactions with IoT devices without the need for manual interven-
tion. In this contribution, we explore how general-purpose Large 
Language Models (LLMs) can accelerate the process of creating UIs 
for interacting with IoT devices based on standardized descriptions 
(i.e., W3C WoT Thing Descriptions [39]). Concretely, we propose 
the JUIC-IoT system (pronounced “juice it!”), which uses an object 
detection algorithm to categorize objects in the field of view of a 
user wearing a Head Mounted Display (HMD). Then, an LLM is 
cued to select (among predefined UI elements) the most suitable UI 
element for a specific interaction with the IoT device. Next, JUIC-
IoT assembles appropriate means to trigger selected actions of the 
IoT device, thereby enabling people to have control over the devices 
in their physical environment. JUIC-IoT is capable of creating JIT 
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UI in MR, paving the way to dynamic generation of UIs according 
the user context (e.g., role, language) and environmental conditions 
(e.g., lighting, available devices). 

2 Related Work 
Several efforts have demonstrated promising synergies between 
MR and the IoT. From MR applications to provide end-users with 
an immersive experience to control vendor-specific IoT devices (i.e., 
Tuya) [1], and applications that help users create control flows for 
managing IoT devices [28]; to applications that consider several pro-
tocols to interact with diverse IoT devices [42]. However, given the 
large amount of IoT solutions and their heterogeneity, there are sev-
eral recurrent challenges that MR systems face, such as scalability, 
flexibility, and seamless integration of new IoT devices [6]. 

To specifically tackle the heterogeneity of IoT devices (aside 
from MR), the Web of Things (WoT) was proposed [13], whose 
objective is to bring any type and any size of devices (known as 
Things) to the Web, by following the Web architecture principles. 
The WoT as standardized by the World Wide Web Consortium 
(W3C WoT), proposes the creation of Thing Descriptions (W3C 
WoT TD), which are machine-readable and -understandable de-
scriptions of the programming interfaces of WoT-enabled devices1 . 
These uniform descriptions act as an interoperability layer that 
enables the creation of systems that communicate seamlessly with 
WoT-enabled devices. A device’s TD specifies its interactions affor-
dances, which can be of one of three types: property, interaction, or 
event. A property affordance corresponds to a state that is produced 
by the WoT device, an interaction affordance triggers an action on 
the device, and an event affordance is usually used to subscribe 
to a device that periodically produces responses. MR applications 
that take advantage of TDs have been proposed in the context of 
digital companions to assist users in ubiquitous computing environ-
ments [12, 32, 34]. However, the UIs to interact with WoT-enabled 
devices are often still created manually. 

Automatic Creation of User Interfaces for IoT Devices. Several 
works have explored the automatic creation of UIs to interact with 
IoT devices. De la Torre et al. [35], proposed the creation of Web 
UIs from the metadata of Online Labs (OLs), which are considered 
a particular case of IoT devices. Similar to TDs, a vocabulary is 
proposed to uniformly describe OLs, including the expected data 
types on each interaction. This vocabulary was manually mapped 
to UI elements (e.g., a button and a label) and their corresponding 
HTML tag. Using this mapping, a UI can be automatically rendered 
at runtime. Mayer et al. [22] proposed a taxonomy of typical high-
level interaction semantics and a scheme for describing WoT devices. 
This taxonomy is linked to diverse interactors, that can be used 
to trigger an action (e.g., a knob UI element to modify the light 
intensity, a swiping motion, or a shaking movement). Hence, an 
interface can be automatically created given an annotated WoT 
device. Salama et al. [26] develop a C# library to parse W3C WoT TD, 
to dynamically create MR UIs based on a specific TD. However, these 
UIs do not discriminate the type of interaction or the expected data 
type in a UI element. While these methods facilitate the creation of 
UIs by annotating IoT and WoT devices with a specific vocabulary, 

1We refer to WoT-enabled IoT devices as WoT devices. 

Figure 1: An overview of the JUIC-IoT system comprising 
one or multiple WoT devices, an MR HMD, and an LLM. 

in some cases, they require that developers provide the general 
metadata of the device, and the UI-relevant metadata. 

Generative AI (GenAI) for User Interfaces. rGiven the advances 
and popularization of GenAI, an increasing number of works ex-
plore its use for UI design prototyping [25, 30], UI guiding de-
sign exploration processes [17], and generating feedback about 
designs [10]. Hence, the use of Gen-AI tools is mostly focused on 
the design of UIs rather than on the actual creation of the UI that 
is then presented to users. GenAI is also increasingly used in MR 
applications [14], for instance, to augment objects in MR by pro-
viding contextual information [9], to allow users to dynamically 
customize MR environments [36], and to adapt MR UIs considering 
social and environmental situations [18]. These works focus on the 
virtual content displayed for a user, or they rely on prior knowledge 
of the objects users interact with. 

Just-in-Time User Interfaces (JIT). GenAI may also be benefi-
cial for the creation of JIT UIs. JIT UI have shown to reduce user 
errors and cognitive load by delivering just enough information 
at the right time [15], or to adjust in real-time from learned user 
behavior [19]. 

3 Concept and System 
Drawing on research from these different fields, we present the 
JUIC-IoT system as a proof-of-concept. Our system enables people 
to interact in MR with WoT devices using just-in-time generated UIs. 
JUIC-IoT consists of an MR application (running on a HMD), WoT 
devices with their respective TDs, and an LLM. On a conceptual 
level, JUIC-IoT functions as follows (see Figure 1): When a user 
looks at a WoT device, an object detection algorithm identifies it 
and maps it to its URI to load its TD (Step 1). The TD is then divided 
into its affordances for better LLM processing (Step 2). The MR 
HMD sends each affordance to the LLM with a prompt to select 
suitable UI components from a list of defined ones. This prompt 
is accompanied by a history with examples of previously selected 
components, to obtain consistent responses (Step 3). The prompt 
specifies the expected output format (see Listing 2). After receiving 
LLM responses for each affordance, the MR application assembles 
the UI components and displays the interface to the user (Step 4; see 
Figure 3 in Appendix A). A UI component that allows interacting 
with the WoT device includes a send button. When pressing this 
button, JUIC-IoT collects all the input values and sends them back 
to the LLM (along with the affordances) to create a cURL command 
(Step 5). This command executes an HTTP request that then triggers 
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(a) Text Display. (b) Horizontal Value 
Display. 

(c) Vertical Value 
Display. 

(d) Input Form. (e) Slider. (f) Two Buttons. 

(g) Button. (h) Toggle. 

Figure 2: The UI building blocks for Sensor data UI compo-

nents (a-c), and stateless and stateful UI components (d-h). 

an interaction with the WoT device (e.g., moving a robotic arm) 
(Step 6). As before, a prompt and brief chat history are included to 
define the task and ensure more reliable results. This second LLM 
prompt is necessary to generate a well-formed cURL command, as 
the TD does not precisely specify how the request body should be 
formatted (e.g., when multiple parameters need to be set). 

3.1 UI Building Blocks 
For the JIT UI, we defined several UI building blocks in Unity as 
Prefabs (see Figure 2). Based on the output of the LLM, they are 
then assembled and displayed to users for a given WoT device 
(see Figure 3 in Appendix A). Using predefined blocks instead of 
creating the full UI allows to keep the prototype usable, while the 
system can later be extended to a finer level. Our UI components 
are based on Mayer et al.’s model-based interface description for 
smart objects [22], which categorizes interactions into three types: 
sensor data, stateless actuators, and stateful actuators. In our system, 
sensor data (e.g., from a temperature sensor) is displayed using 
Text Display (Fig. 2a) or Horizontal/Vertical Value Displays 
(Fig. 2b / 2c). Triggerable stateless actuators whose state cannot 
queried (e.g., a digital doorbell) are represented by the Button 
(Fig. 2g). The Two Buttons component (Fig. 2f) is used for “go 
to” abstractions (e.g., a CD-player’s forward-button). Triggerable 
stateful actuators whose state can be queried (e.g., a dimmable 
lamp) are handled using multiple abstractions: set (Input Form), 
set value/level/set intensity (Slider, Two Buttons or Input Form), 
switch (Toggle), position (Slider), and move (Two Buttons). 

3.2 Prototype 
In our implementation, the main application is running on a Mi-
crosoft HoloLens 2, and was created with Unity 2022.3.34 and the 
Microsoft’s Mixed Reality Toolkit 3 (MRTK3). We used a custom 
trained YOLOv7 [41] model for the object detection. We further-
more implemented the connection to three local LLMs (OpenAI 
GPT-4o, Google Gemma-2-27, Microsoft Phi-4) and one remotely 

connected one (OpenAI GPT-4o). The communication with the lo-
cally hosted LLMs was managed through LMStudio2 running on a 
Windows 11 PC with a a Nvidia GeForce 4070 Ti graphics card. As 
LM studio provides a local server that mimics the API endpoint of 
OpenAI, all models could be addressed with the same implemen-
tation. We set the temperature to 0.2 for the interaction with the 
LLMs to create more predictable outputs. Additionally, we used the 
TDs from four WoT devices in our lab (see Figure 4 in Appendix B): 
the robotic arm “Cherrybot”3 (nine affordances), the mobile robot 
“Tractorbot”4 (three affordances), smart blinds (two affordances) 
and a smart light (two affordances). The TDs were in either RDF 
Turtle format [37] or in JSON-LD [38], as these are both common 
formats for TDs.5 

Listing 1: The affordance for operating the Cherrybot’s grip-
per, as it is describe in the robotic arm’s TD (in RDF). 
[ a td:PropertyAffordance , cherrybot:Gripper , js: 
IntegerSchema , cherrybot:GripperValue; 

td:name "gripper "; 
td:hasForm [ 

hctl:hasTarget <https ://api.our.labs.website. 
com/cherrybot/gripper >; 

hctl:forContentType "application/json"; 
hctl:hasOperationType td:readProperty ]; 

td:isObservable false; 
js:minimum "0"^^ xsd:int; 
js:maximum "800"^^ xsd:int ]; 

Listing 2: An optimal JSON response from an LLM for the 
Cherrybot’s gripper’s affordance in Listing 1 
{ "gripper ": [ { "numeration ": "1", 

"name": "Gripper", 
"uiComponent ": "Value Horizontal Display", 
"valueMAX ": "800", 
"valueMIN ": "0"} ]} 

4 Evaluation 
To evaluate our approach, we focused on the UI selection through 
the LLM (i.e. Step 3 in Figure 1), as this is the most crucial part of 
the JUIC-IoT system. Listing 1 provides an example of a property 
affordance from the Cherrybot’s TD, and Listing 2 shows the cor-
responding expected response from the LLM. Here, the suggested 
UI component would be a Value Horizontal Display (see Fig-
ure 2b). We tested this step of our system’s workflow with the setup 
described in Section 3.2. 

4.1 Method 
For our evaluation, we tested whether different LLMs and prompts 
yield significantly different results. We created four prompts to 
assess how their formulation affects UI building block selection, 
one manually (PH1), and three prompts were generated with Chat-
GPT (PAI1, PAI2, and PAI3)6 . We used ChatGPT to create textual 
descriptions for all UI building blocks (see Figure 2)) and to develop 
the remaining prompts, supplying the desired input (see Listing 1) 
and output formats (see Listing 2). 

2https://lmstudio.ai/. Last accessed May 15, 2025. 
3Ufactory xARM 7, see: https://www.ufactory.cc/xarm-collaborative-robot/. Last ac-
cessed May 15, 2025. 
4M5Stack LidarBot, see: https://docs.m5stack.com/en/app/lidarbot. Last accessed May 
15, 2025. 
5See https://github.com/Interactions-HSG/JUIC-IoT for the full TDs for each device. 
6See https://github.com/Interactions-HSG/JUIC-IoT for the full prompts. 

https://lmstudio.ai/
https://www.ufactory.cc/xarm-collaborative-robot/
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We evaluated system performance using four metrics: Accuracy, 
Reliability, Completeness, and Response Time. Accuracy assesses 
UI element selection compared to human judgment (1 point for 
exact match, 0.5 points for a usable but non-intuitive option). Re-
liability evaluates JSON response validity (1 point for no repair 
needed, 0.5 points for automated repair possible via a script, 0 points 
otherwise)7 . Completeness scores LLM output based on metadata 
inclusion and relevance (see Listing 2); penalties are applied for 
missing components). Response Time measures how quickly the 
system generates a response in seconds. For each of the WoT de-
vices’ TDs, we sent each affordance ten times to each LLM per 
prompt, to ensure more robust results. All three measurements 
were then calculated individually for each response. 

4.2 Results 
Accuracy. Overall, the mean accuracy was 0.54 (𝑆𝐷 = 0.43). Per 
Model, GPT-4o was first (𝑀 = 0.64, 𝑆𝐷 = 0.42), followed by Phi-4 
(see Table C1). A Kruskal-Wallis test showed statistically significant 
differences between the model’s accuracy scores (𝐻 = 105.11, 𝑑 𝑓 = 
3, 𝑝 < 0.001). Pair-wise Wilcoxon rank-sum test showed significant 
differences for all pairings except for Gemma-2 paired with Phi-4. 
All prompts scored a similar accuracy between 0.53 and 0.55 (see 
Table C2), and were thus not significantly different. The accuracy 
per WoT device was highest for the Tractorbot (𝑀 = 0.77, 𝑆𝐷 = 
0.30), and lowest for the Blinds (𝑀 = 0.11, 𝑆𝐷 = 0.20; see Table C3). 

Reliability. The overall mean Reliability score was 0.51 (𝑆𝐷 = 
0.07; scale from 0 to 1). Across all categories, it was on average 
between 0.50 and 0.56, as the vast majority had a Reliability score 
of 0.5 (see Table C2). This means most often the LLMs do not return 
the response in a fully valid JSON-format but with minor, easy to 
correct syntax mistakes. Only the response to PH1 got a score of 
’1’ in 72 iterations with either GPT-4o or Llama-3. 

Completeness. The overall Completeness score was on average 
0.65 (𝑆𝐷 = 0.36; scale from 0 to 1). It was highest for the GPT-4 
responses (𝑀 = 0.8, 𝑆𝐷 = 0.29), followed by Phi-4 (see Table C1), 
with significant differences between them (𝐻 = 342.84, 𝑑 𝑓 = 3, 𝑝 < 
0.001). Pair-wise Wilcoxon rank-sum test showed significant differ-
ences again for all pairings except for Gemma-2 paired with Phi-4. 
Per prompt, the AI generated prompt scored between 0.70 and 0.73, 
while the human-generated one, PH1, scored only 0.66 on average 
(𝑆𝐷 = 0.30; see Table C2), with significant differences between 
the prompts (𝐻 = 88.84, 𝑑 𝑓 = 3, 𝑝 < 0.001). Pair-wise Wilcoxon 
rank-sum tests showed significant differences only for the pairings 
of PH1 with each of the other ones respectively. 

Response Time. On average the Response Time was 15.76s (𝑆𝐷 = 
21.26). Gemma-2’s response time was surprisingly high (𝑀 = 48.69, 
𝑆𝐷 = 26.39), while the setup with the other LLMs responded be-
low 10s on average (see Table C1). Disregarding Gemma-2, the 
mean Response Time for PH1 (the shortest prompt) was only 2.32s 
(𝑆𝐷 = 1.80), and around four times as long for the AI prompts. 
Per WoT device, the Response Times were significantly different 
(𝐻 = 41.89, 𝑑 𝑓 = 3, 𝑝 < 0.001; no Gemma-2), but all between 5.79s 
(Lights; two affordances) and 7.51s (Roboticarm; nine affordances). 

7After we completed this project, OpenAI introduced Structured Outputs in their API 
which always guarantees a reliable output, see https://openai.com/index/introducing-
structured-outputs-in-the-api/, last accessed July 15, 2025. 

5 Discussion 
In general, our evaluation showed that LLMs can produce usable 
results for matching TD affordances with UI component descrip-
tions. The choice of LLM impacts the Accuracy and Completeness 
of responses, with GPT-4o yielding the best average results in our 
setup. AI-generated prompts outperformed human-generated ones 
in Completeness, suggesting that using an LLM to create prompts 
enhances the selection of appropriate UI components. Additionally, 
Accuracy varied significantly per WoT device, indicating that LLMs 
struggle with interpreting some device affordances. This empha-
sizes the need for well-formulated, unambiguous TDs. Furthermore, 
we found that the Response Time depends on the used LLM, the 
length of the prompt and number of affordances in a TD. Compared 
to previous proposals for automatic interface generation for WoT 
devices such as HoloWoT [26], our systems offers a greater flexibil-
ity, as it can dynamically react to changes in a TD on the fly. This 
promises more intuitive interaction possibilities for people, and 
provides a space for personalized adaption of the interface. Our sys-
tem furthermore facilities the interaction with new, unknown WoT 
devices through its inclusion of TDs, and thus mitigates the need 
for creating a distinct interface for each individual WoT device. 

Our primary aim was to provide a basic proof-of-concept, hence 
the visual design and layout can be improved. Currently, UI ele-
ments are listed one below the other, which may lead to a confusing 
UI for WoT devices with many affordances. We thus plan to imple-
ment more sophisticated mechanisms for arranging UI components. 
Additionally, our approach is limited to WoT devices, making its 
applicability dependent on widespread adoption. Furthermore, we 
plan to enhance our prototype’s robustness and conduct a user 
study to assess users’ perceptions of the system. 

Finally, JUIC-IoT provides a starting point towards including 
users’ context in the creation of JIT UIs. This would allow, for 
example, to show only functionalities that are currently relevant 
for a user (e.g., a robot technician in a floor-shop will only see 
UI components that help them perform maintenance tasks. While, 
a supervisor will be able to see components that provide them 
performance information), or to adapt in real-time the visual design 
of the UI to the user preferences (e.g., a colorful or a neutral design). 

6 Conclusion 
In this work, we explored automatically creating just-in-time UIs for 
interacting with WoT devices through MR. Our JUIC-IoT prototype 
uses TDs to access device interaction possibilities and communi-
cates with LLMs to match them with pre-defined UI components. 
The system showcases that general-purpose LLMs, not specifically 
trained for this task, can select UI components based on TD infor-
mation. The evaluation showed that the choice of LLM, the quality 
of TDs, and the input length are more crucial for usable and fast 
results than prompt formulation. Researchers should thus carefully 
choose their LLM, ensure TDs have well-formulated affordances, 
and provide concise LLM inputs. 

JUIC-IoT provides a step towards the just-in-time creation of 
UIs for interacting with WoT devices in MR, enabling people to 
easily see an interface for a WoT device right when they want to 
interact with it, without the need for prior knowledge about the 
device except for its TD. 

https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
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A MR Screenshot 

Figure 3: A screenshot of the full UI with UI components for 
all affordances of the Cherrybot’s TD. The user sees this UI 
in MR on the HL2. The ’Gripper’ on the bottom corresponds 
to the affordance in Listings 1 and 2. 

B WoT devices 

(a) Robotic arm “Cherrybot” 

(b) Mobile robot “Tractorbot” 

(c) The Office Lights (front) and Blinds (back) 

Figure 4: The WoT devices whose TDs we used for the evalu-
ation. 
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C Detailed Results of the Evaluation 

Table C1: Evaluation results per Model. 

Model Accuracy Reliability Completeness Response Time (s) 
mean (std) mean (std) mean (std) mean (std) 

GPT-4o 0.64 (0.42) 0.51 (0.06) 0.80 (0.29) 7.44 (5.4) 
Gemma-2 0.56 (0.46) 0.50 (0) 0.74 (0.36) 48.69 (26.39) 
Llama-3 0.40 (0.38) 0.55 (0.15) 0.51 (0.36) 4.93 (2.7) 
Phi-4 0.57 (0.41) 0.50 (0) 0.76 (0.31) 8.14 (3.92) 

Table C2: Evaluation results per Prompt. 

Prompt Accuracy Reliability Completeness Response Time (s) Response Time (s; w/o Gemma-2) 
mean (std) mean (std) mean (std) mean (std) mean (std) 

PAI1 0.53 (0.43) 0.50 (0) 0.70 (0.37) 19.19 (23.29) 8.17 (5.19) 
PAI2 0.54 (0.42) 0.50 (0) 0.72 (0.37) 20.28 (23.91) 8.47 (3.15) 
PAI3 0.55 (0.42) 0.50 (0.00) 0.73 (0.36) 19.91 (23.17) 8.36 (2.89) 
PH1 0.54 (0.44) 0.56 (0.16) 0.66 (0.30) 8.95 (17.18) 2.32 (1.80) 

Table C3: Evaluation results per WoT Device. 

WoT Device Accuracy Reliability Completeness Response Time (s) Response Time (s; w/o Gemma-2) 
mean (std) mean (std) mean (std) mean (std) mean (std) 

Blinds 0.11 (0.2) 0.53 (0.12) 0.84 (0.32) 12.84 (12.89) 6.51 (3.39) 
Lights 0.42 (0.48) 0.51 (0.08) 0.82 (0.35) 11.62 (12.7) 5.79 (2.94) 
Roboticarm 0.59 (0.41) 0.51 (0.07) 0.71 (0.34) 19.57 (25.91) 7.51 (5.05) 
Tractorbot 0.77 (0.30) 0.52 (0.09) 0.53 (0.33) 16.67 (21.31) 6.04 (3.2) 
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