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Figure 1: An overview of the GlassBoARd system. The first (1) and second user (2) are wearing Augmented Reality (AR) headsets
with built-in eye-trackers and microphones (1a and 2a). Both users see the semi-transparent GlassBoARd with an avatar behind
it representing the other user. Gaze, audio, and work-related data (e.g., AR annotations) are transmitted (b). Through the two
avatars, GlassboARd allows the users to keep eye contact with each other (indicated through the red lines).

ABSTRACT

Recent research on remote collaboration focuses on improving the
sense of co-presence and mutual understanding among the collabo-
rators, whereas there is limited research on using non-verbal cues
such as gaze or head direction alongside their main communica-
tion channel. Our system — GlassBoARd - permits collaborators to
see each other’s gaze behavior and even make eye contact while
communicating verbally and in writing. GlassBoARd features a
transparent shared Augmented Reality interface that is situated
in-between two users, allowing face-to-face collaboration. From
the perspective of each user, the remote collaborator is represented
as an avatar that is located behind the GlassBoARd and whose eye
movements are contingent on the remote collaborator’s instant
eye movements. In three iterations, we improved the design of
GlassBoARd and tested it with two use cases. Our preliminary eval-
uations showed that GlassBoARd facilitates an environment for
conducting future user experiments to study the effect of sharing
eye gaze on the communication bandwidth.
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1 INTRODUCTION

Inrecent years, the use of augmented and mixed reality (AR and MR)
applications kept gaining attention in the scientific and business
discourse. Especially with the diffusion of necessary supporting
features (e.g., wireless internet connection, improved sensing ca-
pabilities, better form factor, and battery life of the headsets) such
applications can today reasonably be used to support shared expe-
riences or computer-supported collaborative work (CSCW).
Studies on the usefulness of AR/MR applications yield mixed re-
sults concerning their industrial applicability. Researchers showed
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that MR can make manufacturing training easier without significant
differences in knowledge retention [16], MR-based remote support
can also be beneficial in error mitigation [1]. Others, such as [40]
argue that sharing awareness cues in MR applications can improve
user experience without interfering with the task performance. On
the other hand, providing spatial, temporal, and visual realism [24],
and overcoming limited interoperability and user acceptance of MR
devices remain as challenges to be addressed in various personal
or industrial use cases [4, 39].

Besides the aforementioned examples it seems that not many or-
ganizations have embedded AR/MR solutions into their day-to-day
operations, especially in collaborative work and remote support.
However, in our personal and professional lives, concepts such as
tele-operation and remote collaboration saw a significant upturn
during the COVID-19 pandemic [39, 42]. Thus, in the near future
it is highly likely that work and collaboration might shift focus
to using AR/MR technologies as one of the main enablers of col-
laborative operations that must be performed remotely, and for
more general CSCW applications. But until this point is reached,
many questions about AR/MR and remote collaboration still need
to be answered. In this paper, we are concerned with two specific
questions that contribute to the scholarship of AR/MR-based col-
laboration: Q1: How can we develop an AR system to improve
the remote and collaborative work experiences with non-verbal
communication cues? Q2: How does sharing eye gaze (as a non-
verbal cue) in an AR setting affect the communication bandwidth
of remote collaboration?

To address Q1, we collect evidence from a broad review of the
scholarship relevant to MR-enabled remote collaboration (see Sec-
tion 2). This review informs the design of the GlassBoARd system
that we introduce in Section 3. GlassBoARd enables collaborators
to annotate a shared transparent interface while seeing each others’
instant eye movements. In contrast to previous solutions, which
employ physical media or virtual reality headsets, GlassBoARd
uses an optical see-through AR headset. Conventional video-based
telecommunication solutions (e.g., WhatsApp, Zoom, MS-Teams)
are limited in allowing users to make actual eye contact due to
the disparity between the front camera and the monitor. In these
face-to-face settings, existing approaches either imitate the position
of users’ eyes (e.g., [33] or in NVIDIA Broadcast!) or they require
computationally demanding solutions [30]. GlassBoARd overcomes
these issues by mapping the eye movements of each user to the
eye movements of an avatar that represents the respective collab-
orator (Figure 1). Thus, GlassBoARd allows collaborators to use
their actual eye movements as an intentional deictic reference and
a non-verbal communication cue. In two collaborative use cases
(i.e., assembly of an electronic circuit and playing a board game) we
tested the feasibility of transmitting non-verbal cues on the com-
munication bandwidth and the experienced co-presence. In remote
collaboration settings, GlassBoARd facilitates a test environment
to study the effect of sharing eye gaze on the communication band-
width. In the future, we will use GlassBoARd as a tool to study Q2
in controlled experiments.

https://www.nvidia.com/en-us/design-visualization/software/broadcast-app/
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2 RELATED WORK

Since the 1980s, computer supported cooperative [14] or collabora-
tive work [10] (CSCW) solutions provide multiple users a shared
(spatio-temporal) workspace [23] which is useful in remotely per-
formed personal or professional activities [39]. Early CSCW systems
allowed sharing data and virtual representations of the users, so
that the seams between users and the virtual environment would
fade away, allowing them to navigate through data as if it was
“malleable space” [12]. This way, users can switch between indi-
vidual and shared tasks or change their viewpoints to accommo-
date their need for specific information contexts [12]. Through
avatars even complex communication cues such as hand gestures
and facial expressions can be conveyed that enrich the feeling of
presence [12]. Presence is the subjective experience of inhabiting
one place even when being physically situated in another [48].
It has been found that an elevated feeling of presence and espe-
cially co-presence [11, 19], which applies the concept of presence
to social settings (e.g., face-to-face interaction that is mediated in
teleconferencing), improves mutual understanding and task perfor-
mance [28, 37, 38].

2.1 Gaze as a Non-Verbal Communication Cue

While the possibility of verbal (written or spoken) communication
is presupposed for most CSCW applications, the transmission of
non-verbal communication cues (e.g., hand gestures, head direc-
tion, and eye gaze) are at the focus of interest in a few early [45]
and some more recent studies [3, 21, 40, 41]. In multiple empiri-
cal studies, eye gaze was found as a powerful non-verbal cue that
can regulate interpersonal interaction and express intimacy [31]
and that can reliably modulate and guide individuals attention to-
wards each other (e.g., in eye contact) or towards jointly attended
objects [35]. In comparison to the verbal communication cases,
there is limited evidence that reassures the promising potential
of such non-verbal cues in collaborative desktop [44] or MR [40]
environments. Velichkovsky showed that eye movements can serve
as an intentional deictic reference that significantly reduces the
bandwidth of verbal communication (i.e., number of spoken words)
and increases the efficiency of collaborative problem solving [44].
Therefore, sharing non-verbal cues, such as eye gaze, is an impor-
tant feature to consider when developing new collaborative MR
applications.

2.2 MR-Enabled CSCW Applications

The MR continuum that is proposed by Milgram and Kishino [36]
focuses on computer generated visual experiences in real, aug-
mented, and virtual environments. MR-enabled CSCW applications
are expected to reduce seams between the real and virtual, allowing
users to experience “natural communication behaviors” [9, 17, 20].
In remote meetings or teleconferences, MR allows users to get a
feeling “beyond being there” [8], indicating that they can facilitate
the sense of co-presence. A seamless MR-enabled CSCW applica-
tion should allow users to solve tasks faster and communicate more
naturally by exhibiting a minimum set of features such as setting
virtual objects (and annotations) into a context with real objects
and enabling independence (e.g., of viewports) and individuality
among the collaborators [9].
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In the early 2000s, the cost, complexity, and the sensing and
rendering capabilities of the MR hardware posed a central limitation
to using them in collaborative settings [2, 7, 9]. Today, the form
factor and usability of MR HMDs (e.g., Microsoft Hololens 2, Varjo
XR-3, Magic Leap 1 and 2, HTC Vive ProEye, Apple Vision Pro)
have significantly improved. They can overlay virtual information
on top of real scenes, track the instant 3D position and movements
of the user (including their head, hands, and eyes), provide users
with novel and intuitive interactions, and they hold the potential
to become more than a visual interface [24, 39, 43]. Developers
can create convincing MR experiences with the help of sensors
embedded to the HMDs including gyroscopes or infrared sensors
in connection with base stations? to measure position, orientation
and acceleration of the user, outward facing cameras to process the
environment through a video stream on the device or transmit it to
a remote computer and infrared sensors to measure the user’s eye
gaze.

In real face-to-face settings and in some CSCW applications such
as ClearBoard [22], collaborators can see where others are looking
by observing their eye movements. However, in most MR settings
this poses a substantial challenge because remote collaborators
often cannot see each other and in cases where they can, it is often
solved just by overlaying a video stream of one user’s (e.g., an
expert) webcam view as an inset on the field of view of the HMD
of their collaborator (e.g., in Microsoft’s Dynamics 365 Remote
Assist?). This does not profit from the contextual meaning to the eye
gaze, as it is not in sync with what the remote expert actually sees or
looks at. Some research exists on how to mitigate such issues with
the help of overlaying a virtual beam or circle onto the field of view
of the executing collaborator, indicating where the remote expert
is looking at a given time [40]. Findings from recent experiments
have shown that MR HMDs can allow collaborators to share their
field of view which in return can improve their communication
and the sense of togetherness [27], while gaze-enabled HMDs can
improve the reading experience in virtual reality (VR) [34] and
remote collaboration on physical tasks in MR [25] environments.
Collaboration among multiple users can also be facilitated through
a transparent display that can additionally allow a direct interaction
with objects that are seen through the display [26, 32].

2.3 Implications for the Design of AR/MR
CSCW Systems

Towards building AR/MR enabled CSCW systems, what a user sees
in their viewport has a large impact on the perception of the system.
For example, a study by Kim and colleagues has shown that users
prefer to control their own viewports independently and prefer to
give an indication of the other viewports [27]. Thus, contrary to
what might seem intuitive, what you see is what I see (WYSIWIS)
systems do not necessarily create a higher sense of togetherness and
awareness [27]. A further advantage of such a setup is that it pre-
vents an unstable video feed [18]. Individual viewports also allow
for limiting the display of information only to relevant contexts for a
given user [47]. In some MR-enabled CSCW cases, both remote and

Zhttps://store.steampowered.com/valveindex
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local users may prefer an expert-and-executing-collaborator set-
ting [46] to a setting where both users were given equal knowledge
and responsibilities [27]. Further studies on collaborative work also
implied that such a setting might increase general awareness [13]
and with it togetherness and eventually the feeling of presence.

As the collaborative work mainly deals with communication and
negotiation [12], it is crucial to make communication over AR/MR
technology as intuitive and easy as possible. This requires means
to exchange most if not all communication cues, such as spoken
language, eye gaze cues and hand gestures between the collabora-
tors. Aside from these communication cues, which can naturally be
used in non CSCW settings, improving communication is a large
potential use case of the technological advantages of AR/MR tech-
nology. On the one hand, users seem to expect AR/MR technology
to improve their CSCW experience rather than just keeping it as
good as it was by “enhancing” reality [8]. On the other hand, since
it is able to display virtual (meta) information into a user’s field
of view, AR/MR technology provides the possibility to add even
more context to the communication between the collaborators and
meet these expectations. For example, for including visual commu-
nication cues, an annotation system can be used to allow a remote
expert to add notes into the executing user’s field of view [27]. With
cameras and suitable sensors on board of the HMD, this could be
further refined to make the annotations “world locking" meaning
that the remote expert can add annotations directly to real objects
in the executing user’s surroundings [15, 27]

In conclusion, the design of AR/MR systems to support remote
CSCW has to focus extensively on fostering communication. Ways
to achieve this are to enable users to independently set their field of
view while being shown the viewports of the other person, to have
a clear division of work and to also enable the transmission of non-
verbal communication cues such as eye gaze. Keeping these points
in mind, we developed a system and conducted a user evaluation
to examine the capabilities of remote AR/MR collaboration.

2.4 The ClearBoard System and Experiments

Ishii and colleagues designed ClearBoard, which has inspired our
work, to study how non-verbal communication cues can be effec-
tively shared in CSCW settings [22]. The ClearBoard is a shared-
drawing medium that aims to overcome the spatial, temporal and
functional seams (i.e., constraints or limitations) [6] between in-
terpersonal space (IPS) and the shared workspace (SWS) [22]. The
SWS is the space where the actual collaborative task takes place
and the IPS is described as the space where the communication
over the task happens [22]. Losing essential communication cues
between SWS and IPS causes difficulties in shifting focus between
these spaces and a less efficient communication [22]. Although
on a common physical whiteboard it is also not possible to focus
on both spaces at the same time, in contrast to most Groupware
programs it is possible to switch between these spaces very nat-
urally, for example, by making quick eye contact with the other
collaborator [22]. Even today, popular CSCW software does not
seem to have solved this problem. For example, Microsoft Teams*

“https://www.microsoft.com/de-ch/microsoft-teams/group-chat-software
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or the conferencing platform Zoom?® gained rapid popularity dur-
ing the COVID-19 pandemic. However, they clearly separate SWS
(e.g., a video stream of a user’s desktop) and IPS (e.g., the video
chat) and thereby create an artificial seam. Some of these seams
might even be more pronounced now, as Microsoft Teams does not
display the other participants of a conference (by default) to the
user sharing a PowerPoint presentation, virtually limiting the IPS
to audio transmission.

The ClearBoard-0 was a glass screen between two collabora-
tors sitting face-to-face to each other on opposite sides of this
screen [22]. The major drawback of this setup was that written
letters appeared mirrored to one collaborator. To solve this problem
amongst others, two improved versions of the ClearBoard (using a
system of networked computers, cameras and projectors) were pro-
posed [22]. In the end, the system consisted of two drawing boards
from which the user’s own drawings were recorded and on which
the video stream of the other collaborator and their drawings were
projected [22]. The reported results were that the seams between
IPS and SWS actually were reduced and increased eye contact could
be detected [22]. This in turn was argued to be potentially crucial
for future CSCW applications [22], not least because it might lead
to increased awareness and satisfaction with the tool.

The impact of the ClearBoard experiment has been so extensive
that when AR/MR/VR technologies became viable, it was already
recreated and examined in a virtual setting multiple times. For ex-
ample, [20] developed a VR tool which allowed co-located or remote
collaborators to write on a virtual transparent screen but also to
share non-verbal communication cues through their own virtual
avatars. The results of this experiment imply that reducing seams in
a virtual world is also beneficial to task performance and the feeling
of connectedness with other users [20]. Therefore, it can be inferred
that the face-to-face setting of the ClearBoard which allowed to
share non-verbal communication cues also proved promising for
VR applications as it likely improves the feeling of presence. In two
experiments, Kiyokawa and colleagues studied the communication
behavior of co-located users with optical see-through (AR), stereo-
scopic, and monoscopic video see-through and VR headsets [29].
Both experiments were conducted in collaborative face-to-face set-
tings. The results of the first experiment showed that real world
visibility (as in the AR case) has a significant effect on the communi-
cation behavior. The AR case significantly improved collaborative
search performance and significantly reduced the need for extra
communication (e.g., pointing more than once and using deictic
phrases) because of the availability of the non-verbal communica-
tion cues (i.e., gaze). Furthermore, participants of this experiment
find that compared to the other cases the AR case provides a more
natural view and it was easier for them to see where their partner
was looking and pointing at. In the second experiment, Kiyokawa
and colleagues explored the interplay between the IPS and three
different SWSs. The shared workspace (i.e., a two-dimensional vir-
tual grid) was located a) vertically on a wall that is off to the side
of the users allowing them to see it from similar perspectives, b)
horizontally on a table between the users, and c) again vertically
but in a floating position between the users thus allowing them to
see it from opposite directions. The results showed that placing the

Shttps://zoom.us/
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shared workspace between users as in the floating case allows a
natural, social, and easy communication. It promotes more active
behavior (e.g., use of body language), motivates involvement, and
causes less misunderstanding. However, users liked the wall case
most because they could see the SWS from similar perspectives.

3 GLASSBOARD SYSTEM

Drawing on the original ClearBoard experiments in combination
with the properties of a distributed AR-enabled CSCW system, as
introduced above, we developed the GlassBoARd system using the
Microsoft HoloLens 2 (HL2) device for a local user who collaborates
with a remote expert as shown in Figure 2. To visualize the virtual
elements of our experiment setup we created an application with
the Unity game engine implementing the Microsoft Mixed Reality
Toolkit (MRTK). This allowed us to deploy the app to the HL2 as
well as executing it on a PC running Windows 11. Similar to the
ClearBoard, we went through multiple iterations in our design.

3.1 First Version

In the first version of GlassBoARd (V1), both users saw a virtual
version of ClearBoard on their respective screens (HL2 and PC).
In V1, communication from the HL2 to the PC was facilitated by
further transmitting a video stream from a stationary camera to be
displayed behind the virtual GlassBoARd of the remote user (e.g.,
an expert as shown on Figure 2). The local user in turn only saw the
GlassBoARd with an avatar representing the remote user behind it.
To transmit non-verbal gaze cues, we fitted the PC with a Tobii Pro
Fusion Eye tracker and accessed the eye tracking functionality of
the HL2 to track the eye movements of the users in relation to the
GlassBoARd and send them back and forth between each other. The
avatars’ eyes thus matched the movements of the actual users’ eyes.
In addition, both the transparent interface of the GlassBoARd as
well as the eye movements were mirrored in a way that both users
were looking at the same orientation of the interface and of the
items that were either placed or drawn on it. If the HL2 users now
looked to the left, for instance, the PC user would see the avatar
looking to its right, which is the user’s left. Communication for both
users was therefore possible in written form (on the GlassBoARd,
where also images such as the circuit diagrams could be displayed
by the remote expert), verbally by talking (even though they were
physically separated, the users were within earshot of each other)
or through non-verbal means such as the eye gaze from the local to
the remote user. We used the same Unity app for the HL2 and the
PC, and implemented the mirror-networking package® to allow for
the interconnection between these apps using only Unity which
worked but turned out to be not as easy to maintain and extend.
While testing V1, we employed the repair of a broken circuit
as a collaboration scenario, where a remote user (in expert role)
gave verbal and visual instructions to a local user. Before the task
started, the remote expert on the PC saw the avatar of the local
user. After it began, however, the avatar was disabled on the PC
and instead the above-mentioned video stream of the workbench
was shown. We could observe that this kind of task and setup lead
to the majority of the communication being conducted orally only

®https://mirror-networking.com
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A

Figure 2: GlassBoARd-V1. The setup allows collaboration be-
tween a remote user with a PC (A) and a local user wearing
an HL2 (B). The data streams include (1) the WebRTC (au-
dio/video) between the remote user and a laptop computer (C)
that records the workspace of the local user (2), and a custom
protocol to synchronise game objects (3) of the GlassBoARd-
V1 such as the avatar and annotations.

which prompted us to employ a different task which incentivized
the use of the non-verbal cues as a core GlassBoARd feature.

This first version thus mostly acted as a proof of concept that
our setup could track and transmit eye track gaze cues with accept-
able accuracy and that writing on the GlassBoARd was possible,
even though some users reported difficulties with the HL2’s hand
input system of pointing and pinching. Moreover, trying out the
system, first users reported that they did not like the appearance
of the avatar (see Figure 2). They said that it put them into the
metaphorical “uncanny valley”, meaning that the anthropomorphic
characteristics of the model were pronounced enough to represent
a human but just not enough to be convincing that it was a real
human but rather a doll. Hence, due to performance problems and
the mentioned difficulties regarding future extension, we decided
to improve the application to provide it with a better foundry.

3.2 Second Version

In the second version of GlassBoARd (V2), we aimed for a more
symmetrical solution with respect to the exchange of communica-
tion cues, in which both users see each other represented through
avatars. This way, first, the amount of exchanged data is reduced, as
no video stream needs to be transmitted, which might be beneficial
in settings where bandwidth is limited. Second, it is possible that the
feelings of co-presence and togetherness can be further enhanced
if both users see an actual representation of their co-worker with
corresponding eye movements, instead of just their hands through
the video stream. This resulted in us removing the video stream for
the remote expert on the Desktop and constantly displaying only
the GlassBoARd and the avatar to both users. To counter the prob-
lem of the “uncanny valley”, in V2, we furthermore replaced the
avatar with a friendlier and more human looking model (Figure 3)
from Readyplayer Me’.

Lastly we changed the connection between the HL2 and the
Desktop from a direct connection using the Mirror library for Unity
to transmitting the gaze and GlassBoARd data formatted as JSON

"https://readyplayer.me/avatar
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Figure 3: GlassBoARd-V3. The views from the local user’s
perspective in a desktop setup (A) and a remote user with an
HL2 (B), where the green dot represents the instant point of
interest of the local user.

via the WebSockets protocol to a central express.js server which
relayed it to the Desktop and HL2 applications respectively.

From testing out V2 we concluded that the overall setup was
more robust, and the avatars better accepted than it was in the first
version. However, we were missing a suitable task to be conducted
utilizing the GlassBoARd, as the repair of the broken circuit from
V1 would not benefit as much when no video transmission of the
workbench was possible any longer.

3.3 Third Version

Inspired by the original ClearBoard experiment where the task
consisted of teaching instructions for the game GO, for V3 we im-
plemented a collaboration interface for Teeko (Figure 3), a Japanese
board game similar to Four-in-a-row and Tic-Tac-Toe. We modified
the express.js-server so that it was able to process the game logic on
the board and additionally provided a Web interface through which
the conductor of the experiment could easily select the desired
experimental condition, start it and log the gaze data.

During the preliminary testing of V3, we placed test users in dif-
ferent rooms when collaborating, so as to create a true distributed
setting. In V3, the verbal communication was transmitted over a
Zoom call which allowed us to record the communication at both
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Figure 4: The gaze data evaluation as a function of time (in
milliseconds). In the left subplot, overlapping lines mean that
both users looked at each others’ eyes. In the right subplot,
if one user looks at the other on their own, a (red) point is
created on the left. The (green) points on the right represent
the moments when the users had eye contact.

ends and analyze the effect of eye gaze sharing on the communica-
tion bandwidth. We asked test users to bring their personal noise-
canceling headphones and laptops. After the tests, we transcribed
these recordings and subsequently analyzed the total number of
words and the number of words per minute. As the two participants
were connected through a Zoom call, we took advantage of Zoom’s
capability of recording a separate audio track for each user, as well
as one with both participants’ speech included. We then cut the
recording of each user into individual recordings. While Zoom also
offers the possibility to transcribe these recordings, we found that its
results required too much manual labour to guarantee correct tran-
scriptions. Therefore we used faster-whisper®, a re-implemenation
of OpenAl’'s Whisper speech recognition model, for transcribing
the recordings. Using faster-whisper with Whisper’s large-v2 model
produced good results in our setup with little manual correction
required. The source code of V3 and the transcription scripts can
be found in our public repository.'°

4 FUTURE WORK

This paper focuses on our introduced Q1: How can we develop an AR
system to improve the remote and collaborative work experiences with
non-verbal communication cues?. The current version of our system

8https://github.com/guillaumekln/faster-whisper
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(GlassBoARd-V3) has the necessary features to address this question,
albeit additional improvements are possible. Since the GlassBoARd
was created for the Universal Windows Platform (UWP)!! in Unity,
it can be easily installed on other MR platforms (and HMDs). For
instance, the app could be uploaded to two HL2s (instead of one
HL2 and one PC) and used to connect two users in a completely
MR-enabled CSCW setting. Future research can focus on different
configuration of devices.

In the current version, we used a Zoom call in the assessment of
the bandwidth of verbal communication. However, in the future, the
HL2 or another HMD can be directly used for maintaining the verbal
as well as non-verbal communication without depending on video
streaming among the collaborators. Furthermore, the eye movement
events (e.g., fixations and blinks) can be successfully detected in
AR-HMDs [5]. We think that this information can be transferred
among the collaborators and rendered on their respective avatars,
which in return can improve the perceived sense of co-presence.

Even though MR technologies are starting to gain traction among
the general public, our preliminary tests quickly showed that there
are still usability issues especially concerning their input methods.
In our tests, those users who were not familiar with the HL2’s input
system of pointing and pinching needed more time to learn placing
markers on the GlassBoARd and often ignored their partner avatars’
eye movements. Aside from allocating more time for training and
familiarizing users with our solution, we should hence make explicit
that we are mirroring the eye gaze of the other person.

These observations inform the design of the experiments that
we plan to conduct with GlassBoARd. In a next step, we will use
GlassBoARd-V3 in a controlled experiment to study our introduced
Q2: How does sharing eye gaze (as a non-verbal cue) in an AR setting
affect the communication bandwidth of remote collaboration?. Specif-
ically, following the promising findings documented in [29, 44]
and the recommendations of a recent review of MR-based remote
collaboration on physical tasks [46], in the user evaluation of V3,
we will focus on realistic collaborative assembly, maintenance, and
repair tasks with objects such as lego pieces, jigsaw puzzles, and
mechanical parts.

5 CONCLUSIONS

We present GlassBoARd that allows two users to collaboratively
annotate a shared transparent AR interface while seeing each oth-
ers’ instant eye movements. GlassBoARd maps the eye movements
of each user to the eye movements of an avatar that represents
the respective collaborator and allow them to make eye contact. In
this way, we provide a solution that facilitate non-verbal commu-
nication between the users based on their actual eye movements
(instead of imitating the movements of their eyes). Our solution is
not computationally costly and might be preferable for preserving
the privacy of users in collaborative settings. However, further user
evaluation needs to be conducted to support this claim.
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