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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/Interactions-H Head-mounted Augmented Reality (AR) displays overlay digital information on physical objects. Through
SG/GEAR eye tracking, they provide insights into user attention, intentions, and activities, and allow novel interaction
Keywords: methods based on this information. However, in physical environments, the implications of using gaze-enabled
Pervasive eye tracking AR for human activity recognition have not been explored in detail. In an experimental study with the Microsoft
Augmented reality HoloLens 2, we collected gaze data from 20 users while they performed three activities: Reading a text,
Attention Inspecting a device, and Searching for an object. We trained machine learning models (SVM, Random Forest,
Human activity recognition Extremely Randomized Trees) with extracted features and achieved up to 89.6% activity-recognition accuracy.
Context-awareness Based on the recognized activity, our system—GEAR—then provides users with relevant AR feedback. Due to
Ubiquitous computing the sensitivity of the personal (gaze) data GEAR collects, the system further incorporates a novel solution based

on the Solid specification for giving users fine-grained control over the sharing of their data. The provided
code and anonymized datasets may be used to reproduce and extend our findings, and as teaching material.

1. Introduction Our eyes provide essential visual input to the brain, thus studying
eye movements can give us insights into various cognitive processes

To augment a user’s visual field of view with virtual information and activities of humans (and animals). In this field, researchers have
that is overlaid on a physical environment, increasingly ergonomic been interested in exploiting the potential of eye tracking for the cre-
and powerful see-through head-mounted displays (HMDs) have become ation of novel opportunities in human-computer interaction [10] and
the preferred method over the past decade. Early versions of HMDs  attention-aware computing [11], for selection [12], foveated render-
were complex, bulky, and expensive [1-3]). Today, the form factor and ing [13], activity recognition [14], visual search [15] or in retrospec-
usability of Augmented Reality (AR) HMDs (e.g., Microsoft Hololens tive analysis [16]. Sensors (including regular cameras, infrared-based

2,! Varjo XR-3,> Magic Leap 1 and 2,° HTC Vive ProEye, Apple systems, etc.) that permit eye tracking can today be readily integrated
in HMDs—including AR HMDs—for maintaining explicit, implicit, and
collaborative interactions in Mixed Reality (MR) applications [8] that
can continuously sense and adapt to the requirements and constraints
of users’ context and activities [6,7,17]. This is true across VR and AR,
and beyond, where Milgram and Kishino presented a well accepted
continuum of MR [18], focusing mainly on visual experiences in real,
augmented, and virtual environments. At the virtual reality (VR) end
of this continuum, users are exposed to computer-generated stimuli in
the visual, auditory, haptic, and further spaces. In VR environments,
eye tracking can provide valuable insights about users action planning
and execution strategies (e.g., in [19]). However, in VR experiences,
users’ perception of the virtual content is not necessarily strongly tied
with the real environment that they inhabit [20]. Complementing VR,

Vision Pro°) have significantly improved, including with respect to the
progressive widening of the provided field of view of these devices. AR
HMDs can today track the instant 3D position and movements of the
user (often including their head, hands, and eyes), can detect objects
in the environment that appear in their camera feed through computer
vision methods, and allow novel ways of interaction with connected
devices that are close-by or remote [4,5]. Across various indoor and
outdoor activities, AR HMDs may provide users with access to relevant
information and services if desired [2,6-8]. In this way, AR HMDs bring
us closer to Weiser’s vision [9] of ubiquitous computing: a seamless
integration of networked (micro-) computers and displays into our
physical world, while keeping the increasing complexity manageable
for the end users.
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AR HMDs provide users with a hybrid experience that is a synthesis of
virtual content that is related to and put into context with the natural,
physical scene that a user is situated in. In natural settings (e.g., in
daily personal or professional activities), gaze-enabled AR HMDs permit
better understanding of the cognitive processes of humans, and provide
them with contextually relevant assistance (e.g., visual, audio, or haptic
feedback) [6,7,17,21,22].

Striving to support such assistive systems by gaining a better un-
derstanding of a user’s context in real time, there is a growing interest
in studying human activity recognition (HAR), where researchers make
use of various (often wearable) sensors that generate streams of data to
train and test machine learning models [23]. In recent years, mobile
video-based eye trackers are also being used in HAR-research [24-
26]. However, in physical environments, the implications of using
gaze-enabled AR HMDs for HAR have not been explored in detail.
To demonstrate this gap, we present a systematic review of gaze-
enabled HAR with mobile eye trackers and HMDs. Then, we present
our main contribution: An extended version of the GEAR system [27]
that through gaze-enabled HAR provides users with AR feedback and
relevant functionalities to their activities. Here, we show the results
from our research on using gaze for HAR, where we provide a dataset of
three activities across 20 participants. We furthermore explain how our
system’s data streams are handled through privacy-friendly personal
data stores according to the Solid specification [28]; this allows users
to retain fine-grained control over sharing of their data and of infor-
mation about their current predicted activity with the GEAR system
and with other services. We compare and discuss the performance of
three different gaze-based human activity classifiers, discuss limitations
and future work on top of the GEAR approach and system, and our
discussion includes a re-casting of the GEAR system as an input to
graduate teaching on gaze-enabled AR.

2. Human activity recognition (HAR) from gaze

Research on HAR is relevant for many applications in human-
computer interaction and ubiquitous computing [23] that focus on a
seamless interaction between human users and interconnected systems.
In context-aware computing, the behavior of a system can be adapted
to environmental factors (e.g., location) and other factors such as
users’ expectations, psychophysiology, and activities [11,29]. Since the
1960s (e.g., the seminal work of Yarbus [30]), eye trackers are used
in studying task-dependent cognitive processes, and many studies have
shown that it is possible to decode human activities from their eye
movements [31]. These factors can be measured with various sensors
(see [23,32] for reviews) which can be integrated into the environment
and objects, or may be worn by users. For example, head-mounted (or
mobile) eye trackers pave the way towards a pervasive assessment of
users’ attention, intention, and activities [33].

2.1. Activity recognition with mobile eye tracking

In mobile eye tracking, one of the most influential works on HAR
was presented by Bulling and colleagues [14] who followed a five-step
procedure, which was also used by others. In an office environment,
they collected raw data (Step 1) with a 128 Hz electrooculography
(EOG) system from N = 8 participants for recognition of six activities
(copying, reading, writing, watching a video, browsing, and resting).
After the drift and noise removal (Step 2), they computed a list of
eye movement events (Step 3) such as fixations, saccades, and blinks.
In feature extraction (Step 4), they calculated 62 features comprising
descriptive statistics (e.g., mean, variance, and maximum) of these eye
movement events. Lastly, in model training (Step 5), their Support
Vector Machine (SVM) model classified six activities with an average
precision of 76.1% and recall of 70.5%.

In other studies on HAR, researchers followed experimental pro-
cedures that are comparable to [14]. Kiefer and colleagues used in
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their setup (N = 17), a 30 Hz mobile and video-based eye tracker
(SMI Eye Tracking Glasses) to recognize six activities on cartographic
maps (free exploration, global search, route planning, focused search,
line following, and polygon comparison) [24]. The authors reported a
78% accuracy with an SVM model that was trained with 229 blink-,
fixation-, and saccade-based features. Kunze and colleagues used the
same eye tracker to detect reading activities of N = 8 participants
on five different media with variable amount and orientation of text:
a comic book with images, a text book, fashion magazine, a novel,
and a newspaper [34]. With saccade- and fixation-based features, their
decision tree classifier achieved a 74% accuracy in recognizing the
type of document. In an outdoor wayfinding scenario, Alinaghi and
colleagues studied the recognition of turning activities (left-, right-, or
no-turn) with N = 52 participants who had variable familiarity with the
test routes of 0.9 km and 1.3 km [26]. The data was collected with a
200 Hz PupilLabs Invisible eye tracker. They used feature importance
ranking (on saccade- and fixation-based features) and tested several
models, including SVM and Random Forest, and reached a 91% overall
accuracy with Gradient Boosted Decision Trees.

2.2. Activity recognition with mobile eye tracking and AR

Toyama and colleagues presented a gaze-enabled (with SMI Eye
Tracking Glasses) AR prototype [35]. This prototype calculates whether
the user’s eyes converge on a foreground virtual screen or on the real
scene (i.e., the background). While the point of convergence dynam-
ically changes, the system analyzes the user’s level of engagement in
reading a text on the virtual screen. The system provides proactive
assistance such as highlighting, scrolling, and reminding the user about
the last word read. Eight out of 12 participants rated the system as
beneficial, however the system was tested only in a reading activity.

Rook et al. studied intent prediction in an immersive environment
with N = 30 participants [36]. The 2 Hz data stream included users’
head orientation (from Microsoft HoloLens 1) as an approximation to
their eye-gaze and auxiliary data from objects of interest, and was used
to train a hidden Markov Model (HMM) that yielded an average of 42%
precision and 55% recall on three activities (cooking, microwaving,
exploring).

With Microsoft HoloLens 2 (HL2), Seelinger and colleagues devel-
oped a solution to enable safer navigation in a physical environment by
presenting users with context-adaptive visual cues [37]. They trained a
deep neural network (DNN) with features such as the angular change of
gaze direction and the fixated areas of interest (AOIs), including task-
specific features. The solution was not directly addressing the question
of HAR with a gaze-enabled AR HMD, but their research provides
evidence that a gaze-enabled AR display can promote users’ autonomy
and safety without compromising their performance.

In a virtual reality setup (i.e., no interaction with physical objects
as in AR), David-John and colleagues used an HTC Vive Pro Eye (with
60 to 120 Hz gaze sampling rate) to predict intentions of N = 15
users regarding the selection of items for a given recipe (i.e., onset
of interaction) [38]. Their logistic regression model was trained with
61 saccade- and fixation-based features as well as the K-coefficient
(see [39]) and showed an above-chance prediction of the onset of
interaction.

Recently, Lan and colleagues addressed the creation of synthetic
gaze data [40]. Their solution, EyeSyn, synthesizes realistic eye move-
ment data for four activities (read, communicate, browse a static scene,
watch a dynamic scene) using generative models and a range of image
and video datasets. In an experimental study, the researchers com-
pared the similarity and activity-recognition performance of EyeSyn-
synthesized and actual gaze data collected from N = 8 participants.
Four participants used a Magic Leap One (30 Hz) and the others used
Pupil Labs eye tracker (30 Hz). In all activities, a comparison of the
scatterplots showed that the actual and synthetic data had similar
spatial characteristics (e.g., reading activity involves horizontal shifts
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Table 1
A comparison of selected previous works on HAR with mobile eye tracking devices and AR displays. (p = precision, a = accuracy, r = recall).
Paper Activities Sampling rate in N = Stimuli, AR?  HAR Model Features Performance User
Hz (Device) Display feedback?
[14] 6: copying, reading, 128 Hz (EOG) 8 Digital X SVM 62 based on: p=761%, X
writing, watching a video, (Desktop) fixations, blinks, a=70.5%
browsing, and resting saccades, wordbook
analysis
[24] 6: free exploration, global 30 Hz (SMI) 17 Digital X SVM 229 based on: a="78% X
search, route planning, (Desktop) fixations, blinks,
focused search, line saccades
following, and polygon
comparison
[34] 1: reading different 30 Hz (SMI) 8 Physical X Decision Tree Based on: a="74% X
documents (comic book, fixations,
text book, newspaper, saccades
magazine, and novel)
[26] 1: wayfinding (turn left 200 Hz, 52 Physical X Gradient Boosted 28 based on: a=91% X
right, and no turn) (Pupil Invisible) Decision Trees fixations,
(SVM & Random saccades (feature
Forest) importance
ranking)
[35] 1: reading 30 Hz (SMI) 12 Physical v No machine 1: convergence of 8 of 12 v
& Digital learning model the eyes on participants
(HMD) foreground (AR) or liked it
background
(real scene)
[36] 1: intent prediction in 2 Hz (Head-gaze 30 Physical v Hidden Markov 1: point of p=42%, X
smart environments from HL1) & Digital Model interest r=>55%
(cooking, microwaving, (HMD)
exploring)
[37] 1: navigation in a physical 30 Hz (HL2) 15 Physical v Deep Neural 2: angular change participants v
environment & Digital Network of gaze direction prefer the
(HMD) and fixated areas of solution
interest
[38] 1: prediction of the onset 60-120 Hz (HTC 15 Digital X Logistic 61 based on: above chance X
of item during selection of Vive Pro Eye) (HMD) Regression saccades, prediction
items for a given recipe fixations,
K-coefficient)
[40,41] 4: read, communicate, 30 Hz (Magic Leap 8 Digital v Convolutional Based on: a=90% v
browse a static scene, One); 30 Hz (Pupil (HMD) Neural Network fixations,
watch a dynamic scene Labs) saccades
[27] 3: read, inspect, search 30 Hz (HL2); 10 Physical v SVM, Random 19 based on: a=987% v
200 Hz (PupilCore) & Digital Forest, Extremely fixations, blinks,
(HMD) Randomized Trees saccades

of the gaze). A convolutional neural network was trained with the
synthetic data and achieved a 90% accuracy in the classification of the
activities. Later, these authors also demonstrated that their solution can
provide some AR feedback in two activities but with completely virtual
stimuli [41]. The developers of EyeSyn claim that it is a viable solution
that can address practical constraints of collecting eye movement data
and privacy-related concerns [40]. In Table 1 we present a comparison
of the selected previous work on HAR with mobile eye tracking devices
and AR displays.

2.3. Data privacy in mobile eye tracking

Eye tracking data streams are invaluable sources of information,
as they can reveal sensitive attributes of individuals (e.g., gender,
age, ethnicity, personality traits, health, sexual preference, affect, task
focus) [42,43]. Thus, misusage of data from gaze-enabled devices can
interfere with the acceptability of eye tracking by the general public [7,
44] and, most importantly, infringe the privacy of individuals. Now
that eye tracking is becoming pervasive, it should be added as a promi-
nent privacy concern in ubiquitous computing technologies [42,45-47].
In recent years, interest in addressing privacy-related issues in eye
tracking research (e.g., in the ETRA, UbiComp, and CHI communities)
is growing [46]. Privacy-preserving eye tracking can be maintained
by physically obscuring the recordings [48], introducing randomized

encodings [44] or noise [49] to the data (without compromising their
utility), or by several other approaches and regulations [42].

Today we have access to mobile eye trackers, AR HMDs, and
machine learning models that can be used in individual steps of HAR
starting from data collection to activity recognition and providing feed-
back or assistance to users. To the best of our knowledge, no previous
work provides a HAR solution in gaze-enabled AR HMDs where users
perform different activities with physical objects. In Section 3, we intro-
duce GEAR, that combines a (5-step) gaze-enabled activity recognition
pipeline with an AR app for activity-based feedback. GEAR additionally
integrates the Solid specification [28] for storing and sharing data.
This empowers users to control who accesses and manipulates their
data. Hence, our work provides a blueprint for a more privacy-friendly
approach to the storing, processing, and sharing of gaze data.

3. GEAR: A gaze-enabled AR system for human activity recogni-
tion and feedback in ubiquitous computing environments

GEAR has three main components. The first one is an AR application
that collects raw gaze data in real time from an AR HMD and renders
activity-based feedback on top of a user’s visual field (Fig. 1-1.). The
second component — Activity Recognition (Fig. 1-2.) — implements a
procedure for the real-time recognition of three activities (Reading a
text, the Inspection of an object, and the Search for an object) from
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1. AR Application

@ & = 44 Gaze Data Collection

| User Feedback |

- - - =1

2. Activity Recognition

=.I:].=, Pre-processing
Predicted Event Detection
Activity Fixations (I-DT) etc.

Feature
Calculation
Training Data: 80%
Machine Learning Feature
Model Evaluation Selection
Test Data: 20%

3. Personal Datastore
e | 5 -

Fig. 1. The components of the GEAR. The collected gaze data is sent from the AR
application (1) to the activity recognition component (2). The recognized activity is
returned to the AR application which displays appropriate feedback. Both, the collected
gaze data and the recognized activity, can be stored in a privacy-friendly personal
datastore (3).

T
|
|

collected gaze data. The last component — Personal Datastore (Fig. 1-
3.) - implements a solution for the privacy-friendly sharing of such
collected data.

3.1. AR application

We developed an AR application for the HL2 with the Unity Game
Engine using building blocks from the Mixed Reality Toolkit v2
(MRTK) [50]. The application has two main functions. In Gaze Data
Collection, it fetches and sends the gaze data to GEAR’s Activity Recog-
nition component. The User Feedback prompts a visual feedback that is
relevant to the recognized activity (Fig. 2).

The HL2’s eye tracker has a sampling rate of 30 Hz with an accuracy
of approximately 1.5° [51]. In Unity, gaze samples can be accessed
using the MRTK or the underlying API for the Universal Windows
Platform (UWP) [52]. In GEAR, we use the open-source Augmented
Reality Eye Tracking Toolkit (ARETT) [53]. ARETT operates on top
of the UWP API, reliably delivers gaze samples at a fixed sampling
rate (30 Hz) and can be readily included in Unity projects. It also
provides a Web interface for storing gaze data in CSV files. The data
stream provided by ARETT includes a list of time, gaze, and AOI data,
and some auxiliary information. In GEAR’s HAR, we make use of the
following ARETT data: eyeDataTimestamp, isCalibrationValid, gazeHas-
Value, gazeOrigin (x/y/z), gazeDirection_(x/y/z), gazePoint (x/y/z). The
last three vectors are defined in Unity’s global coordinate system. When
we plotted these different values, we saw that gazeDirection might
be the most suitable candidate to calculate gaze events and features,
respectively. In Fig. 2-(1-a), the gazeDirection data for Reading clearly
shows the individual lines of the underlying text.
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Hello!

| noticed your current activity is
Reading (93.58%).

Should | translate this text for you?

v VYes, please! X  No, thank you

Hello!

| noticed your current activity is
- J Inspection (86.91%).

Should | open a technical drawing for you?

| ! \ . M . Yes, please! X No, thank you

Hello!

, i | noticed your current activity is
Search (97.42%).

Should | open a physical search engine
for you?

i "oy v VYes, please!

3-a 3-b

Fig. 2. Example 3D-Plots of the normalized gazeDirection_(x, y, z) data points which
are collected from one participant in the Reading (1-a), Inspection (2-a), and Search
(3-a) activities. GEAR can display an AR feedback that is relevant to the recognized
activity (1-b, 2-b, and 3-b).

3.1.1. Gagze data collection

In a controlled study, we collected gaze data with the AR application
(Section 3.1) for training and testing HAR models (Section 3.2). The
data that we use here consist of an extended version of the data that
we previously reported in [27]. In this section, we follow the guideline
that is proposed in [54] and report the details of our study.

Participants. We recruited N = 20 participants (eight identified them-
selves as female) from our lab, with an average age of 29.4 years. Seven
participants reported wearing prescription glasses often or all of the
time; 16.7% indicated being extremely familiar with AR headsets and
5% with VR headsets, while 33.3% reported not being familiar with AR
glasses/VR headsets. Most participants (60%, including all participants
with moderate or extreme familiarity) reported that they could imagine
wearing an AR headset for up to two hours in their daily lives.

Apparatus and material. The gaze data was collected with the AR
application and an HL2 as described in Section 3.1. Furthermore, in the
same setup we collected gaze data with a Pupil Core tracker (200 Hz).®
Our study includes three different physical materials for each activity
to-be-recognized. First, a text in English on an A4 paper positioned at
a distance of 70 cm, orthogonal to the participants’ viewing direction,
and covering 40° of their visual field. Second, we used a toy device that
was positioned at a distance of approximately 40 cm covering 20° of
participants’ visual field. Third, we used a small red pin (about the size
of a die) and a workpiece-cabinet (1 x 1 m) with three shelves.

® The Pupil Core data was not used in this study, however, we make it
available as supplementary material for further analysis.
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Part-1
Please read these instructions carefully.
We need you to inspect all six surfaces (including the top,
bottom. and all four sides) of this vehicle. This will allow you to
see whether the pieces of the vehicle are properly mstalled
whether there are missing or loosely mounted parts. Please take
your time to scrutinize the electrical connections and the
mechanical screws and sockets. Make sure they are all correctly
attached to the vehicle. Check that all four wheels are present
and securely attached to the vehicle's base. Inspect the omni-
directional wheels for any cracks or deformities that may affect
their movement. Make sure the wheels rotate freely and that the
axles are not bent. Inspect the vehicle's power supply and make
sure there is at least one battery that is correctly plugged in.
Thank you.

Hello!

| noticed your current activity is
Reading (95.58%).

nslate this text for you?

< Yes, please!

Translation

Parte 1
Por favor lea atentamente estas
instrucciones. _
Necesitamos que inspeccione las seis
superficies (incluyendo la parte superior,
inferior y los cuatro lados) de este
vehiculo. Esto le permitira ver si las
piezas del vehiculo estan correctamente
instaladas, ya sea que faltan o montan
partes sueltas. Por favar, tome su Tjempo
para analizar las conexiones eléctricas y
los tornillos mecanicos y las tomas.
Asegurese de gue todos estan
correctamente conectados al vehiculo.
Comprueba que las cuatra ruedas estan
presentes y sujetas de forma segura a la
base del vehiculo. Inspeccione las ruedas
omnidireccionales para cualguier grieta o
deformidad que pueda afectar su
movimiento. Asegurese de que las ruedas
giran libremente y que l0s ejes no estan
doblados. Inspeccione la fuente de
alimentacion del vehiculo y asegurese de
gue hay al menos una bateria que esta
correctamente conectado.
Gracias.

Fig. 3. The text in English that we used in the Reading activity and its translation in
Spanish.

Procedure. During the experiment, we simulated three realistic tasks
that comprise three main activities: reading instructions, inspecting a
device, and searching for a missing piece of the device. The procedure
started with an introduction of the HL2, comfortably adjusting it on the
head of the participant, and running the default 9-point eye calibration.
Then, each participant was asked to read some instructions, inspect
a device, and search for a missing pin in a cabinet. The reading and
inspection activities were performed in a sedentary position. When
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searching, participants were standing in front of a cabinet. Each ac-
tivity included a gaze recording of about one minute and participants
took short breaks of few seconds between the activities. Finally, we
asked each participant to complete a short demographic questionnaire.
According to the guidelines of the University of St. Gallen Ethics Com-
mittee, all participants gave written consent stating that the collected
data may be anonymously used.

3.1.2. AR user feedback

GEAR collects gaze data in chunks of ten seconds (i.e., consecutive
and non-overlapping time windows) and sends them to the Activity
Recognition component (details in Section 3.2). Each chunk includes the
columns of eyeDataTimestamp, isCalibrationValid, gazeHasValue, gazeO-
rigin_(x/y/2), gazeDirection_(x/y/z), gazePointHit, and gazePoint (x/y/z).
The data is transmitted via HTTP to a notebook computer executing the
Activity Recognition component. The response of the Activity Recognition
component (Fig. 1), including the predicted activity and its probability,
is then sent back to the AR application. Thus, to close the activity-
recognition and user-feedback loop, a user had to perform any of
the three activities for at least ten seconds. In the earlier version of
GEAR [27], on the HL2, a panel displays the current activity (see Fig. 2)
along with a contextually relevant suggestion, respectively.

We extended the user feedback component of GEAR and provide
users with feedback that is relevant to their current activity. In the
Reading activity, the application suggests a translation of the read text
as demonstrated in Fig. 2(1-b). If the user clicks the Yes button, the
application takes a screenshot of the current scene and sends the frame
to an external optical character recognition component as described
in [4]. For the translation of the text, we used a local version of
the free and open source API LibreTranslate’ that supports translation
between English and thirty other languages. Finally, the translated text
is displayed to the user in an AR overlay (Fig. 3). In the Inspection
activity, the application suggests displaying an interactable 3D model
of the inspected device or object. Specifically, for this activity we used
a physical Lego model that we assembled (Fig. 4). To help users find
the missing item in Search activities, the application suggests whether
the user wants to turn on a lamp to increase the brightness in the user’s
field of view (Fig. 5). The HL2 communicates with the lamp using the
lamp’s W3C WoT Thing Description (TD).®* W3C WoT TDs are machine-
readable and machine-understandable interface descriptions of devices
(i.e., Things, such as the lamp in this case) that permit abstracting
from the concrete underlying communication protocol (e.g., HTTP or
CoAP); Thereby supporting interoperability across Internet of Things
(IoT) devices. As an alternative to the switching of a lamp, we propose
that GEAR may make use of a search engine for physical devices [55],
or may even integrate semantic hypermedia search [56]. However in
the current version we did not implement this feature, yet. Contingent
on the recognized activity, the user feedback could also be delivered via
another modality so as to not obstruct the task at hand. (Spatial) audio
might be suitable for tasks like Reading where the translation could be
delivered using a text-to-speech engine, or Search where the user profits
from an unhindered view.

3.2. Activity recognition

The activity recognition component of GEAR implements a proce-
dure that is similar to those used in previous HAR research [14,24,26].
The procedure starts with the collection of raw gaze data as described
in Section 3.1.1. The remaining steps include preprocessing of the raw
data, detecting eye movement events, feature calculation, feature selec-
tion, and finally training and evaluation of selected machine learning
model(s).

7 https://github.com/LibreTranslate/LibreTranslate
8 https://www.w3.org/2019/wot/td
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Hello!

| noticed your current activity is
Inspection (92.81%).

Would you like to see a virtual 3D model of
this object?

s

~ Yes, please! X No, thank you

Fig. 4. The physical Lego model that we used in the Inspection activity (top). The
virtual 3D model is rendered when the user clicks on Yes in the panel.

3.2.1. Pre-processing and event detection

We calculated eye movement events (fixations and blinks) from raw
spatio-temporal gaze data (x, y, z, t). We did not compute saccades
because of the limited sampling rate of the HL2. In a pre-processing
step, before the fixation calculation, we excluded the data where gaze-
Origin and gazeDirection were empty. With the remaining valid data,
we calculated the fixations using the I-DT algorithm [16] with a dis-
persion threshold of 1.6° and a minimum duration of 100 ms. For the
dispersion, we used gazeDirection as the spatial input, which describes
the normal of the gaze, i.e., the gaze direction in the global coordinate
system. Our implementation of the fixation detection is based on a
tutorial by Pupil Labs,” which we adapted to our HL2 setup. Thus,
the scripts that we provide in the supplementary material can be used
to analyze data collected with the PupilCore [57] or the HL2. The
duration of blinks are affected by drowsiness, loss of vigilance, and
mental workload [58]. Thus, we took the highly simplifying assumption
that all missing gaze data were due to closed eyes/blinks. The Extended

9 https://github.com/pupil-labs/pupil-tutorials
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| noticed your current activity is
Search (96.38%).

Do you need more light?

+ Yes, please!

Fig. 5. In the Search activity, the application suggest the user to turn on the light
from the HL2. When the user clicks on Yes, the application sends a PUT request and
changes the sate of the lamp via its APL

Eye Tracking (EET) [59] for the HL2 is supposed to permit sampling
rates of up to 90 Hz, which might allow better blink estimation and
extending the feature set in general. However, when testing it in our
setup, we found that (a) it is not fully compatible with ARETT and (b)
it does not provide a stable sampling rate and therefore would lead to
reduced data quality, which is why we decided against using EET in
GEAR.

3.2.2. Feature calculation

We calculated 19 features from the descriptive statistics (minimum,
maximum, mean, variance, and standard deviation) of the fixation
duration (5 features) and of the fixation dispersion (5 features), the fix-
ation frequency per second, and the fixation density. Additionally, we
calculated the direction of successive fixations for x- and y-directions
(2 features). Furthermore, we calculated the following blink-related fea-
tures: number of blinks, mean, maximum, and minimum blink duration,
and the blink rate per second.

In the Reading activity, the direction of successive fixations is de-
cisive [60] because the horizontal eye movements show a pattern that
goes from left to right but then exhibits a larger jump from right to left
when the participant finishes reading one line and proceeds to the next
(similar to carriage-return and line-feed). However, in Inspection and
Search activities, the eye movements do not necessarily follow a regular
pattern, because typically there is no specific scene layout. In scene
viewing (e.g., inspection or search activities), people may scrutinize
different parts of the stimuli in variable duration [58], thus the visual
and spatial properties of targets and distractors may affect features
extracted from fixations.

3.2.3. Feature selection

Before selecting a subset of features for the classification, we for-
mulated several assumptions for each activity. In the Reading activity,
we hypothesized that the successive fixations of the participants should
be aligned with the lines of text they were reading. Furthermore, we
expected the fixations to be more scattered and of shorter duration in
the Search activity, as participants probably looked quickly at many
different places. In the Inspection activity, we expected fewer fixations


https://github.com/pupil-labs/pupil-tutorials

K. Bektas, J. Strecker, S. Mayer, K. Garcia

Table 2

Performance benchmark of the three models that are trained with 19 features from
the data provided in [27]. The number in each cell presents the accuracy (%) of the
model (the first column of the table) for a 5, 10, 15, 20 s time window. The numbers
in bold are the accuracy of the best model for a given time window.
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Table 3

Performance benchmark of the three models that are trained with 19 features from
the data documented in Section 3.1.1. The number in each cell presents the accuracy
(%) of the model (the first column of the table) for a 5 and 10 s time window. The
numbers in bold are the accuracy of the best model for a given time window.

Model 5s 10 s 15 s 20 s Model 5s 10 s
Support vector machine 78.7 93.3 85.0 100 Support vector machine 85.4 88.3
Random forest 93.2 96.6 94.4 94.9 Random forest 81.0 89.6
Extremely randomized trees 89.3 98.7 96.2 96.6 Extremely randomized trees 81.0 88.3

but with a longer duration, which are less scattered than those in the
search. Based on these assumptions we trained our initial classifier
(i.e., an SVM as described in 3.2.4) with the following six features:
mean fixation duration, maximum fixation duration, variance of the
fixation duration, x- and y-fixation direction and the fixation density
per area. We then normalized these features and trained three different
classifiers to predict the activities.

3.2.4. Model evaluation

We evaluated our solution in two stages. First, we trained three
different machine learning models with the selected features using
the data provided in [27]. The outcome of this initial evaluation is a
performance benchmark of the Support Vector Machine, Random Forest
Classifier, and Extremely Randomized Trees Classifier that is presented in
Table 2. In the second stage, we extended the data set (see Section 3.1.1
for the details) and documented a new performance benchmark with
these three classifiers.

Support vector machine (SVM) classifier. First, since SVMs were used in
most of the related work on HAR documented in Section 2, we applied
an SVM classifier to the selected features. We implemented the SVM
using the sklearn.svm.SVC function in the Python package scikit-
learn'® with Linear, Polynomial, Gaussian Radial Basis Function, and
Sigmoid kernels. We split the data in 80% training and 20% testing. As
the recorded data per participant and activity was around one minute
long, we trained the model with different time windows.

The results of the first stage evaluation showed that, with a ten-
seconds window the first three kernels to all predict with an accuracy
of 93.3% and the Sigmoid kernel to achieve an accuracy of 30%. All
kernels achieved lower prediction accuracies when using window sizes
of five (L: 65.8%, P: 78.7%, R: 72.1%, S: 26.2%) and 15 s (L: 85%, P:
85%, R: 85%, S: 20%). A window size of 20 s, however, resulted in an
accuracy of up to 100% (L: 86.6%, P: 93.3%, R: 100%, S: 33.3%) which
might indicate overfitting to the small sample size.

Random forest (RF) classifier. We developed a model with the
sklearn.ensemble.RandomForest function from the above-mentioned scikit-
learn library. To select the best subset of the precomputed features for
this classifier, forward and backward feature selection was performed.
In the first stage, the results of our experiments with the data provided
in [27] show that the Random Forest classifier outperforms all SVM
kernels by at least 4 percentage-points regarding accuracy. The best
result (96.6% accuracy) was achieved using all of the 19 possible
features. To be comparable to the SVM approach, a window of 10 s
was used for the feature calculation. Other window sizes did not further
improve the result (93.2% for 5 s, 94.4% for 15 s, 94.9% for 20 s).

Extremely randomized trees (ET) classifier. Finally, we applied
sklearn.ensemble.ExtraTreesClassifier while using all 19 features and a
window size of 10 s. This classifier achieved an accuracy of 98.7%
on our test data. As with RF, other window sizes did not improve
accuracy (89.26% for 5 s, 96.25% for 15 s and 96.6% for 20 s). The
ET classifier improves on the accuracy of the RF classifier while also
being significantly faster, requiring 0.639 s + 0.035 s versus 0.844 s
+ 0.020 s to classify 149 samples, i.e., 24% less time per sample. The

10 https://scikit-learn.org

difference between the ET and RF classifiers can be characterized as
follows: While RF computes the most discriminative decision boundary
for each feature, ET chooses the most discriminative boundary among
several random boundaries and with different features subsets [61].
As a consequence, variance is reduced, mitigating overfitting of the
classifiers. Furthermore, by choosing the decision boundary randomly,
the ET is computationally less expensive, leading to faster execution
times.

3.2.5. Second stage model evaluation

In the second stage, we used the extended dataset (see Section 3.1.1
for the details) and only looked at five and ten seconds windows as
we considered that longer window size are practically not fast enough
for providing users with contextual AR feedback for many activities.
With the five-seconds window the Polynomial kernel of the SVM clas-
sifier reached the most accurate estimation (L: 82.9%, P: 85.4%, R:
82.9%, S: 15.8%). The confusion matrices are presented on Fig. 6.
With the ten-seconds window, again, the Polynomial kernel reached
the most accurate estimation (L: 87.0%, P: 88.3%, R: 87.0%, S: 32.4%).
Different from the results of the first stage evaluation, in the second
stage evaluation, the RF classifier reached the best overall estimation
accuracy (89.6%) with the ten-second window, and the ET classifier
reached the same accuracy (88.3%) as the SVM with the Polynomial
kernel. Our findings from the second stage are summarized in Table 3.
The confusion matrices for the ten-seconds window are presented on
Fig. 7.

3.3. Decentralized datastore

Being cognizant of the sensitivity of gaze data and of the detected
activities, we integrated GEAR with Solid. Solid is a specification
proposed by the creator of the Web Tim Berners-Lee [28]. Solid aims
at decentralizing the Web by returning the ownership of data to its
creators rather than keeping it in silos owned by tech companies.
To do so, Solid applications are decoupled from the data they use.
Hence, users producing data keep it in a (personal) data store called
Pod and assign and revoke permissions to specific applications or even
users. A user can have one or many Pods containing personal and non-
personal information; and such Pods can be self-hosted or hosted by a
trusted Pod provider. Thus, Solid applications that access user data in
a Pod do not keep a copy of this data; such applications only access
(and possibly modify) the data transiently, where access rights are
checked on each access. A Pod is implemented as a Web server with
standardized authentication, authorization, and sharing procedures.
Moreover, being a specification for the Web, Solid takes advantage
of standardized vocabularies expressed in RDF (Resource Description
Framework)'! such as the Access Control List (ACL) schema,'? used for
granting read, write, and append rights.

We set up an instance of the Solid community server,'® which is an
open-source implementation of the Solid specification, developed and
maintained by the research community. Moreover, we added to our AR

1 https://www.w3.org/RDF/

12 https://www.w3.0rg/2001/04/ACLS/Schema and https://solid.github.io/
web-access-control-spec/

13 https://github.com/CommunitySolidServer/CommunitySolidServer
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Fig. 8. Describing a GEAR detected Activity using well known data schemas such as
FOAF for person, schema.org for actions, and the PROV-O for the activity provenance.

application the capability of writing the collected gaze data directly
into a user’s Pod in the form of a CSV file (see Fig. 1-GazeData.csv).
Likewise, the Activity Recognition component stores the recognized ac-
tivity in the user’s Pod as an RDF file (see Fig. 1-Activity.ttl), which
is expressed using well-known schemas [62]. On the AR application,
a user can decide who to share their gaze and activity data with by
indicating the WebID of a Solid application or of a user.

To describe an activity recognized by GEAR in a structured manner,
we propose to use schema.org,'* the PROV-O ontology,'® and the Friend
of a Friend (FOAF) ontology.!® Fig. 8 shows the proposed structure
to describe an activity detected by GEAR. The Person concept is im-
ported from the FOAF ontology, together with the name and mailbox
(i.e., mbox) properties. The Activity concept is imported from the
PROV-O ontology to describe provenance of an activity recognized by
GEAR (including end time and person that created/used the activity).
Moreover such Activity will also be an instance of the corresponding
granular type of action specified by the schema.org concepts: ReadAc-
tion, CheckAction, or SearchAction; in which the schema.org CheckAction
is semantically equivalent to the Inspect activity in GEAR.

4. Discussion
4.1. Model and system performance

In this work, we trained three commonly used machine learning
models (i.e., SVM, RF, and ET) for predicting human activities from
users’ eye movements (see Section 3.2). For the activity recognition,
we followed a five-step procedure starting with the collection of raw
data and detection of eye movement events (e.g., fixations and blinks)
in this data. Thus, the overall performance of activity recognition
naturally depends on the accuracy of eye movement event detection.
The performance evaluation of the event detection is beyond the scope
of the present work. We consider that future research on gaze-enabled
activity recognition can significantly benefit from existing best prac-
tices about acquisition of raw data [63] and selection of event detection
algorithms [64-66].

In order to have a systematic comparison among the three models,
in two stages, we trained them with data from N = 10 and N = 20
individuals and created a benchmark that is based on their accuracy in
predicting the underlying activity (i.e., reading, inspection, searching).

14 https://schema.org/
15 https://www.w3.org/TR/prov-o/
16 http://xmlns.com/foaf/0.1/
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The results of our benchmark show that all three models allow an accu-
rate and close-to-real-time (i.e., <= 10 s) prediction. GEAR provides its
user with AR feedback that is relevant to their activity at regular time
intervals. The length of these intervals mainly depends on the duration
of the time window that is required for the prediction of user’s activity.
For instance, in the current implementation of GEAR we set this to
10 s (Section 3.1.2). However the results of the second stage evaluation
(Section 3.2.5) show that the SVM classifier can accurately predict the
current activity within 5 s. To assess the latency of activity recognition,
we ran GEAR for ten minutes with the SVM classifier and the ten-second
window. The results of this assessment showed that the total duration
of activity recognition (i.e., from sending the gaze data to the activity
recognition component until the arrival of the detected activity at the
HL2) and the additional time required for providing the subsequent
AR feedback was on average 150.05 ms (SD = 30.43 ms). Overall, the
results of our performance benchmark indicate that GEAR can predict
human activities with a gaze-enabled AR headset and provide them
with feedback.

4.2. Limitations and future applications

In our experimental setup, we used GEAR in the recognition of
only three activities and performing these activities in a particular
order constitutes a scenario that is similar to a real industrial workflow
(e.g., inspection, maintenance, or repair operations): First, read the
instructions, then inspect the device and search for the missing piece.
However, to receive some feedback that is relevant to their activity, the
users had to deliberately continue performing that activity without an
interruption.

In our daily social and professional life, we typically perform many
activities during which our mental state can change from losing at-
tention (e.g., a state of mind-wandering [67]) to fully engaging with
the current activity (i.e., the state of flow [68]). Thus, in a next step,
GEAR can have components that are dedicated to estimating users’
current activity among a long list of activities, their abilities (e.g., skills
and expertise) and mental state (e.g., stress, cognitive load, atten-
tion) and provide them with feedback in real industrial environments
(e.g., in [21,69]).

Recent research shows that eye gaze is a useful information source
for multimodal and interactive Al assistance systems [70,71] that can
be implemented in modern AR headsets. Therefore, we consider that
gaze-enabled activity recognition (e.g., GEAR) can be a beneficial
extension of such systems and provide users with contextually relevant
feedback and assistance. Specifically, HAR from gaze data could be
incorporated into digital companion systems to perceive the state of
the environment from a literally user-focused view. Digital Companions
are smart agents capable of assisting and protecting their users in
a proactive and in a reactive manner [72]. To do so, they utilize
technologies such as connected devices (e.g., sensors), and computer
vision [73] to perceive the current state of an environment, so that
suitable assistance can be computed and delivered to a user. In addition
to contributing the current user activity and especially when combining
with computer vision, such systems enable fascinating applications: For
instance, knowledge of the user’s current activity along with informa-
tion on the objects that the user gazes at enables opportunistic behavior
suggestions (cf. [74]); or it could steer the user’s attention towards
currently relevant environmental artifacts (cf. [75]; in the future, this
might even allow for coordinating interactions with the environment.

In the next version of GEAR, the activity recognition component
can be implemented in C# instead of Python so that it runs directly on
the HL2. The SharpLearning'” library for C# provides implementations
for RandomForest and Extremely Randomized Trees classifiers, while
the event detection algorithms can be implemented analogously to

17 https://github.com/mdabros/SharpLearning
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the Python implementation. Alternatively, we consider testing Iron-
Python'® that allows developers to use the .NET framework API from
Python. Using C#’s concurrency support, the activity classifier, data
collection, and feature extraction can be executed in parallel. We will
also extend the user feedback part with other modalities (e.g., audio
cues, or speech interfaces), relevant Web-based services (e.g., Object
Detection [73,75] and Identification [5]) and by defining dynamic AOIs
to make it more useful for users. Additionally, it is possible to integrate
the Extended Eye Tracking API [59] in GEAR for collecting gaze data
on the HL2 with a higher sampling rate. This would allow us to detect
a broader range of eye movement events and test an extended list of
features with our system in the recognition of other activities.

While a user evaluation of GEAR is beyond the scope of the present
work, future research should study how well the activity recognition
models work across users with diverse backgrounds. Furthermore, the
short- and long-term implications of assistive systems (and digital
companions), such as GEAR, on user behavior and cognitive abilities
should be investigated.

4.3. GEAR as teaching material

The work presented in this paper was conducted in the context of a
graduate course on Ubiquitous Computing, where one of three assign-
ments focused on Gaze-enabled AR. In addition to the code and data
that is required to reproduce the results of this paper, we furthermore
provide all teaching materials and their sources for reuse by others.*° In
the assignment, students gained experience working with gaze-enabled
AR and different machine learning models by building on top of GEAR
components. In Task 1 of this assignment, students worked on offline
HAR using a Jupyter notebook that they were required to extend and
improve to analyze our gaze dataset; in Task 2, they were required to
extend a provided software framework for the HL2 to enable the close-
to-real-time classification of user activities with the help of the model
from Task 1, as described in this paper. Finally, Task 3 focused on the
provisioning of AR feedback to the user, where we required students
to provide contextual suggestions to users using any feedback modality
(simple audio, spatial audio, visual feedback, etc.).

In a subsequent assignment, students created a new version of
the gaze-enabled activity recognition pipeline using Web-accessible
personal Pods with the Solid specification, where access rights were
granted to other users (or applications) based on their WebID (con-
cretely: Solid OpenID Connect?’), together with Solid Access Control
Lists. This new pipeline allows users to control their own gaze data,
granting or restricting access rights at any time. Through this assign-
ment, we aim at emphasizing that precisely because of the fine-grained
insights that can be derived from a person’s gaze data (in our case
the performed activity, but as Kroger et al. [43] point out, even drug
consumption and cultural background can be derived), it is of utmost
importance to be aware of the responsibility that implementing eye-
tracking technologies implies. Practitioners should only collect, process
and store gaze data given previous informed consent. Moreover, practi-
tioners should be aware and opt for privacy enabling technologies (such
as Solid) that might be implemented when working with gaze data.

5. Conclusions

In this article, we presented GEAR, a gaze-enabled human activity
recognition system on an AR HMD that provides users with feedback
relevant to their current activity. GEAR makes use of the Solid standard
to permit fine-grained access control to user gaze data. We positioned
GEAR with respect to related work in the domain of mobile eye tracking
and evaluated its activity recognition performance in two stages. First,

18 https://ironpython.net/
19 https://github.com/Interactions-HSG/GEAR
20 https://solidproject.org/TR/oidc
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we used the data from N = 10 participants that we collected in our
previous work [27]. At this stage, using an Extremely Randomized
Trees model, GEAR achieved an accuracy of 98.7% when recognizing
three different activities in real time, using a window size of ten seconds
of gaze data. We extended this initial dataset with ten additional
participants and tested the same three classifiers. With a Random Forest
classifier, GEAR achieved on average 89.6% accuracy when recognizing
three different activities, again with a window size of ten seconds.
The source code of GEAR and anonymized datasets can be used for
reproducing and extending our findings and as teaching materials. In
the future, interactive Al assistance systems can benefit from gaze-
enabled activity recognition features (e.g., GEAR) to provide users with
contextually relevant assistance in AR headsets.
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