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ABSTRACT
To enable people to interact more efficiently with virtual and phys-
ical services in their surroundings, it would be beneficial if infor-
mation could more fluently be passed across digital and non-digital
spaces. To this end, we propose to combine semantic technologies
with Optical Character Recognition on an Augmented Reality (AR)
interface to enable the semantic integration of (written) informa-
tion located in our everyday environments with Internet of Things
devices. We hence present SOCRAR, a system that is able to detect
written information from a user’s physical environment while con-
textualizing this data through a semantic backend. The SOCRAR
system enables in-band semantic translation on an AR interface,
permits semantic filtering and selection of appropriate device in-
terfaces, and provides cognitive offloading by enabling users to
store information for later use. We demonstrate the feasibility of
SOCRAR through the implementation of three concrete scenarios.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented real-
ity; Ubiquitous and mobile computing systems and tools; •
Computing methodologies→Knowledge representation and
reasoning; Computer vision tasks.
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1 INTRODUCTION
In our professional and private lives – ranging from smart home
control to industrial automation – we have access to a growing
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number of services: More and more sensors – even low-cost bat-
teryless sensors that may run for decades [10] – provide us with
information on our context and we may utilize virtual and physical
functionality through the interfaces these services provide to us.
It is then often desired to integrate data processing flows across
services (i.e., service mashups) that fulfill a specific user goal.

In this context, we ask how humans might be enabled to interact
more efficiently with (virtual and physical) sensors and actuators
in their surroundings, and specifically how we might create more
fluid transitions between these services and information that is
available to humans in non-digital form. To accomplish this fluidity,
we propose a system that combines semantic technologies with
Optical Character Recognition (OCR) on an Augmented Reality
(AR) interface: Our system thereby is enabled to semantically lift
non-digital information in the field of view of the user and thereby
to associate it with available services in the user’s surroundings.

The adoption of Knowledge Graphs (KGs) [12] and the expansion
of semantic technologies research has gained traction in academia
and industry in recent years. This development is driven by the
vast (and heterogeneous) data that is being produced by humans
and physical objects (e.g., sensor and actuators), and is leading to a
proliferation of controlled vocabularies and standards within and
across domains. The objective of semantic technologies is to create
common machine-readable and machine-understandable descrip-
tions of the data that heterogeneous systems produce and consume,
thereby enabling them to interoperate. Building on top of the In-
ternet of Things (IoT), the Web of Things (WoT) takes semantic
descriptions as one of its pillars to bring sensors and actuators to
the Web. Through semantic descriptions, specifically descriptions
that follow the World Wide Web Consortium’s (W3C) WoT Thing
Description (TD)1 standard, the WoT achieves uniform machine-
understandable descriptions of device interfaces and supports bind-
ing to a variety of protocols (e.g., CoAP, MQTT, OPC-UA). TDs can
be enriched using ontologies and may utilize well-known vocabu-
laries to further contextualize the Thing that is being described, as
well as its inputs and outputs.

These semantic descriptions are readily used by automation
systems, e.g. during the discovery of a required functionality to
accomplish a specific task. Thus, we propose that human interfaces
should also make use of such semantic descriptions to better sup-
port users. This can be done, for instance, by adapting the value
read by a sensor to the system of units (e.g., imperial or metric) that
best fits the user’s context, or by contextualizing data located in the
1https://www.w3.org/TR/wot-thing-description
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Figure 1: Outline of the SOCRAR related work.

user’s physical environment which requires further information to
be understandable: A specific reading of a CO2 sensor measured
in parts per million (ppm) might be shown to expert users in this
very form, while it is automatically converted and presented as low,
medium, or high to other users, thereby providing more meaningful
information to them. In this context, we propose that combining AR
– as human interface – and OCR – for extracting characters from dig-
ital images that are captured by an AR headset’s camera [23] – with
semantic technologies and W3C WoT TDs can provide people with
useful contextual support in pervasive computing environments.

Our main contribution is the integration of semantic technolo-
gies, W3C WoT TDs, OCR, and AR, to create a system capable of
detecting data from a user’s physical environment, contextualizing
it on a semantic backend and communicating useful information to
a user through an Augmented Reality interface.

In the following, we present an overview of research that is
related to our contribution; we then provide several motivating
scenarios in Section 3 – these relate to the potential impact of the
SOCRAR system on end users, from helping them better under-
stand information located in their physical environment that today
lacks context, to decreasing a user’s cognitive load by helping her
remember data located in the physical world that might function as
an input to another device or service. We subsequently present the
system’s architecture and implementation in Section 4 and discuss
the demonstrated features, future applications, and limitations of
our approach and system in Section 5.

2 RELATEDWORK
SOCRAR integrates contributions from several fields, namely the
IoT, theWoT, semantic technologies, OCR, and AR. Thus, we discuss
relevant works in Sections 2.1–2.4 (see Fig. 1).

2.1 OCR and Semantic Technologies
From early-on, the OCR community has considered the semantics
of recognized texts. Some research has focused on improving the
accuracy of OCR algorithms through semantic enrichment, while
others focus on enabling a range of post-OCR tasks. Given such a
range of tasks and applications, the interpretation of what semantics
encompasses differs across the related work.

Concerning research to improve the accuracy of OCR algorithms,
Jobbins et al. [14] propose a method that uses external knowledge
from a thesaurus. Given such information, the semantic similarity
among a set of recognized candidate words is computed and used to
propose other words from the thesaurus that have higher semantic
similarity. Broda and Piasecki [6] propose a system to improve a
handwriting OCR algorithm for medical records in a similar way, by
using semantic similarity among the OCRed words. Here, different
semantic similarity measures (e.g., cosine, information radius) are
explored. However, this system does not need a thesaurus, instead

it introduces heuristics for ad-hoc terms such as abbreviations and
names of specific drugs.

Park et al. [26] apply OCR to restaurant and shopping receipts:
Following a set of guidelines and a pre-defined taxonomy of the
different sections in a receipt (e.g., name of the business, items
purchased, subtotal, total), people manually draw bounding boxes
around these sections and select the correct label (e.g., store name)
thereby contextualizing the recognized characters. Jian et al. [13]
motivate their research with the hesitancy to apply NLP techniques
to books that have been digitized through OCR due to OCR-induced
errors that might persist in combination with the lack of trans-
parency of the applied NLP methods. Concretely, that contribution
presents an exemplar study that analyses how BERT (Bidirectional
Encoder Representations from Transformers) embeddings are able
to encode semantic information of books at the chapter level on
OCRed books vs. baseline books. The early results of this work
suggest that NLP techniques, specifically BERT, could be utilized
on OCRed texts with some success.

Wang et al. [39], propose an algorithm for OCR-based image
captioning that takes advantage of not only the text that is recog-
nized in an image, but also of the size and position (i.e., geometric
relationship) of recognized OCR tokens. Through a Long Short-Term
Memory plus Relation-aware (LSTM-R) pointer network architec-
ture, the authors show that their algorithm performs better than
others that do not incorporate such geometric relationships. Regard-
ing the meaning of the tokens, semantic features of the recognized
words are considered as the likelihood that they might appear in
the current context.

Given this existing promising work, we see great potential in
pursuing the integration of OCR approaches with semantic tech-
nologies – specifically KGs – and posit that this would enable the
creation of applications that take advantage of rich domain knowl-
edge that has been made available in a machine-understandable
way. Moreover, it could allow not only for integrating data from a
user’s environment but also to control services around them.

2.2 Semantic Technologies and the IoT (WoT)
Semantics have also increasingly started to play a role in the IoT
and the WoT. Over the past decades, we have witnessed extensive
research and development of technologies to enable sensing, com-
putation, actuation in connected everyday things, thus bringing the
vision of an IoT ever closer to reality. The availability of low-cost
computation and networking capabilities has driven the application
of the IoT to use cases ranging from consumer devices to industrial
processes [20]. However, out of the several challenges already visi-
ble a decade ago [11, 20], the problem of technical (e.g., proprietary
communication protocols) and semantic (e.g., proprietary vocabu-
laries and information models) interoperability of heterogeneous
devices still presents an obstacle to the world-wide integration of
connected devices and services, which would ideally stretch across
domains. This integration is, today more than ever, relevant as more
and more automated clients – autonomous systems – are starting
to populate digital environments alongside humans [8].

The focus on interoperability prompted researchers to be in-
spired by the Web architecture, which has successfully demon-
strated that it can bring together IoT devices in a scalable (including
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on low-power devices) [15] and open [22] way. Beginning with a
vision of integrating Things as a part of the Web, a recent standard-
ization effort by the W3C has resulted in the creation of means to
describe both the semantic context of things and the interaction
possibilities offered by them [7]. Thus, the W3C WoT provides a
guiding abstract architectural framework2 which can be used for the
implementation of domain-specific solutions. Moreover, the WoT
enables the semantic description of devices and services through the
Thing Description (TD)3 specification. By specifying and linking to
its TD, a device can for example convey that it is an instance of the
<http://www.w3.org/ns/sosa/Sensor> class from the Semantic
Sensor Network Ontology (SOSA)4 and that its outputs are of type
<http://qudt.org/vocab/unit/DEG_C> which is a concept from
the QUDT5 ontology. The sensor’s machine-understandable de-
scription may then be linked to other descriptions, such as one
corresponding to the room in which the sensor is located, perhaps
using the Brick6 ontology. Given this integration, a building automa-
tion program in charge of keeping a specific space at a comfortable
temperature can utilize the current sensor value, plus the unit used
to measure the temperature and the place in which the sensor is
located to trigger an action in another physical device, e.g., turning
on the air conditioning unit in the correct space.

The semantic description increases the discoverability and reuse
of the sensor, and permits semantic integration that dissolves syntac-
tic tight coupling. Concretely, the semantic linking of the sensor’s
functionality with the requirements of a consumer of its data and
the protocol binding of the sensor’s TD allows a sensor of this kind
to be replaced or upgraded at run time and without causing any
disruption, this could prevent having to re-engineer the building
automation program.

The application of Web and Semantic Web principles to IoT
systems that were hitherto focused on connectivity, is becom-
ing a reality with the adoption of the WoT. The integration of
knowledge-based reasoning into (industrial) devices has enabled
not only first semantics-based integrations [17], but also applica-
tions such as knowledge-driven automated fault detection [28], as
well as multiagent-based systems capable of reasoning to achieve
their goals, in application fields such as smart farming [29].

2.3 IoT (WoT) and AR
Our proposed approach, SOCRAR, focuses on the human element
and on how we might facilitate the interaction of humans with
their smart environments. Three decades ago, Mark Weiser envi-
sioned a seamless integration of networked (micro-) computers
and displays into the physical world [41]. Weiser’s vision is pro-
gressively blending in our daily activities and various academic
agendas [1, 30]. Earliest Augmented reality (AR) applications go
back to the 1960s [34], however only three decades ago AR could
truly become a viable research field [2]. Today we have access to
technologies that reduce seams between computers, humans and
their environment while making Weiser’s vision more tangible.

2https://www.w3.org/TR/wot-architecture
3https://www.w3.org/TR/wot-thing-description
4https://www.w3.org/TR
5https://qudt.org
6in https://brickschema.org

Thus, expectations on the IoT (WoT), AR, and on the combination
of these technologies are growing [25, 40].

We find joint efforts to develop immersive displays as seamless
interfaces to IoT devices that allow human users to observe, control,
and interact with systems in smart environments such as vehicles,
homes, farms, industrial shopfloors, and cities [24, 35]. For example,
Garcia-Macias et al. developed UbiVisor, a prototype browser for IoT
devices [18]. The mobile client of the UbiVisor captures the context
(e.g., humidity and temperature for a plant) using QR and RFID tags.
Then its server makes inferences with the help of semantic models.
Finally, it informs the user on an AR display. Mayer et al. present a
system that records interactions between IoT devices in a central
logging backend [21] for enabling users to observe the causes and
effects of interactions among those devices either on a screen or
an AR frontend. More recently Zheng et al. proposed STARE, a
semantic AR decision support framework [42]. In a smart home
context, the results of a user experiment show that STARE reduces
information overload and improves the interpretation of IoT data
with decision support explanations and information visualizations.
While AR headsets are mainly used as an enabler of information
visualization in human-computer interaction, we note that they
can be employed as well for the detection of biometric signals
from users (e.g., eye movements) [25], detection of physical objects
(through visual object classification) [33], and recognition of other
visual information that is available in the surroundings of users.

2.4 AR and OCR
Since most AR headsets also include forward-looking cameras,
the combination of AR applications and OCR is compelling. On
AR headsets, OCR has in the past been utilized to detect texts on
physical documents, digital displays, or handwritten documents
in various domains, such as traffic surveillance or to support the
digitization of historical documents [23]. Other research has in-
cluded OCR in AR applications for translation purposes [36]. For
instance, Toyama et al. developed a system in which a user wears a
see-through head-mounted display (HMD) that overlays Japanese
texts with English translations [37]. HoloDoc displays additional
digital information alongside physical documents with the help of
AR [16]. Beyond mere visualization for its human user, this work
also uses OCR to search for additional information about recog-
nized words using an online search engine. Similarly, Rahman et al.
proposed a system to support data collection processes in aquacul-
ture farming [27]. There, OCR was employed on AR glasses to read
data from a sensing unit; this data is then sent to a cloud server
for processing. However, to overcome errors in the recognition of
units in the displayed area, the team implemented a post-processing
algorithm that corrected the OCR results.

3 MOTIVATION
To our knowledge and given the state of the art across these four
research domains, there has been no research or system yet that
leverages the WoT together with semantic technologies, AR, and
OCR in order contextualize the users interactionswith available con-
nected devices in their environment. In the following, we present
three scenarios that motivate our work and suggest the benefits it
might bring to users.

https://www.w3.org/TR/wot-architecture
https://www.w3.org/TR/wot-thing-description
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Ben, the exchange student. Ben is an exchange student from the
USA, who is spending a semester in France. Ben is excited about his
time abroad but there are frequently encountered differences that
inconvenience him. For example, the temperature display in his
room and other displays in different classrooms show the temper-
ature in degrees Celsius. Such details that delay Ben’s immediate
understanding of his surroundings are everywhere, e.g., on the
street signs showing the speed limit, on the food and beverages he
buys, and on the recipes he wants to cook. Ben of course knows
how to convert most metric units to imperial ones, which are natu-
rally more meaningful to him. However, he needs time and effort to
compute such conversions every time he wants to make a decision.
Ben is lucky to have a modern dorm room equipped with devices
and appliances that can also be controlled at a fine-grain granu-
larity, for example he can control the color of the lights and their
intensity and can select an ambient mode. He just needs to learn
a few french words. What if Ben could simply use his AR-enabled
device capable of contextualizing his field of view and showing
data that is meaningful to him?

Carol, the facility manager. Imagine a common IoT scenario, such
as Building Automation (BA) systems, which ensure that living and
working spaces are comfortable and secure for their occupants. The
requirements for space comfort vary widely according to its usage,
e.g., office buildings, hotels, manufacturing plants, and laboratories.
BA systems are often programmed to operate according to specific
purposes. However, the purpose of a specific space might change
over time according to the current users’ needs (e.g., a sport hall can
be used as a conference venue). During the operation of a building,
Carol’s job is to audit the operation of the BA system, where she
must be informed of the intended usage of the different spaces in
the building, so she can make sure that the corresponding comfort
requirements are met. Currently, Carol’s audits are done manually:
She browses her physical files and selects the checklists that detail
the standard comfort requirements of each space she needs to audit
considering the specific usage of the space. Then, Carol physically
visits each space, takes measurements of the current conditions, and
compares them with the requirements specified on her checklists.
Such manual auditing tasks are cumbersome and time-consuming,
resulting in increased costs. Could there be a system that makes
Carol’s work more efficient and allows her to take advantage of
the connected sensor on the environment (which log the data but
do not have a physical user interface) so she does not have to take
redundant measurements in every space she checks?

Diana, the machine operator. People tend to delegate parts of cog-
nitive processes to external media in their environment [9] ranging
from paper notes to digital repositories. Such cognitive offloading
is defined as “the use of physical action to alter the information
processing requirements of a task so as to reduce cognitive de-
mand” [31]. Especially in cognitively demanding situations (e.g.,
an operator working on the shop floor) people need to note down
relevant details on physical or digital media (post-its, shopping or
to-do lists, etc.) to memorize and recall them later. In her job as a
machine operator, Diana is responsible for collecting parts of a ma-
chine tool from a stockyard, assembling the tool from these parts,
and measuring the tool’s offset values. The measured values then
need to be entered in a milling machine that uses them to process
raw material. Even though the entering of (even slightly) wrong

Figure 2: SOCRAR’s three modules and their interactions
with anAR-enabled device.With SOCRAR,we integrate OCR,
AR, semantic technologies, and W3CWoT environments.

offset values can incur large cost – specifically, damaging the raw
material, the machine tool, or even the machine itself – Diana often
does not write down the measured values, since this could delay
her operations. Her daily work would be significantly simplified,
and significant errors could be avoided, if she was equipped with
a system that would remember the measured offset values for her,
for simple recall when configuring the milling machine.

4 ARCHITECTURE AND IMPLEMENTATION
To create SOCRAR, a system capable of contextualizing data in a
user’s field of view, we propose to combine OCR, AR, semantic
technologies, and W3C WoT-enabled devices. These technologies
interact through three main modules (see Fig. 2): a detection and
identification module, an understanding and contextualization mod-
ule and a sensing and actuation module. The functionality from
these modules is integrated through an AR HMD.

Detection and Identification. This module runs on a Microsoft
HoloLens 2 (HL2) and uses the Windows Runtime OCR API7. An
image from the HL2’s camera serves as an input for the OCR engine
which outputs the text it recognized on the image, splits it into lines
and then into individual words. The OCR engine runs locally on
the HL2, this could be favourable for use cases in which keeping
data in premises is important (e.g., handling confidential data).

Understanding and Contextualizing. Once a string of characters
has been recognized through OCR, this module is in charge of
giving meaning to such characters. To this end, we take advantage
of well-known, well-documented ontologies such as QUDT8 for
units and dimensions, the Smart Applications REFerence ontology
(SAREF)9 for describing IoT devices, and the Building Topology
Ontology (BOT)10 for describing spaces. Thus, when a character
is recognized, the SOCRAR system queries the Knowledge Graph
(KG), for example to verify if the recognized characters correspond
to a unit described in QUDT. In case it is found that they indeed
represent a unit, the semantic representation of this unit is retrieved,
including the conversion factor to other compatible systems of units.

7https://docs.microsoft.com/en-us/uwp/api/windows.media.ocr
8https://qudt.org
9https://saref.etsi.org
10https://w3c-lbd-cg.github.io/bot
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Additionally, the KG hosts the Thing Description (TD) ontology11
and its instances, which describe WoT enabled devices that are
related to the description of the physical space they are located in.

Sensing and Actuating. Given an environment in which devices’
programming interfaces are described using TDs that are accessible
through a KG, the SOCRAR system is capable of interacting with
these devices by making the appropriate requests described in their
TDs. Thus, when a user is about to enter a room and looks at
the room’s sign, the OCR engine recognizes a set of characters,
which are then used to query the KG. After finding out that they
correspond to a room (described through the BOT ontology), a
query can be made to find the available WoT devices in that room.
From the resulting device’s TDs, the system can make, for instance,
an HTTP request to obtain the current value of a humidity sensor,
or a request to make a robotic arm grab an object.

Augmented Reality. The user interface is visualized on the HL2
using building blocks from the Mixed Reality Toolkit 12. Today,
hand-held devices (e.g., smartphones or tablets) enable many end-
users to have access to AR-based solutions. We used HL2 because
we developed our system for the near future when, as envisioned
by others [25], head-mounted or wearable AR displays will be as
pervasive as smartphones today. Moreover, compared to a hand-
held device the HL2 allows a user to use her hands to interact
with devices in her environment. In our implementation, the HL2
is able to communicate with the KG and the W3C WoT devices
through HTTP requests, however the system can be extended to
any (preferably TD-bound) communication protocol.

In the following, we discuss the operation and features of the
SOCRAR system across the three scenarios introduced in Section 3.

4.1 Ben: Contextualizing Data in the Wild
To demonstrate the SOCRAR system’s capabilities of contextualiz-
ing data, we have implemented three exemplary input conversions
of currencies, units, and words (i.e., colors). Recalling Ben’s acclima-
tization process in a new country, the SOCRAR system is capable of
converting the values of a temperature display to the unit that he is
more familiar with (e.g., degrees Celsius to Fahrenheit), in this case
imperial (see Fig. 3). To further assist Ben, the price tags of products
in shops and prices of menus in restaurants can be converted to
a currency that he understands intuitively. Thus, when Ben goes
abroad, the SOCRAR system can assist him in automatically convert-
ing the prices he sees (e.g., from Swiss Francs to Euros). Concretely,
in Ben’s scenario, the SOCRAR system captures an image of Ben’s
field of view. This image is then evaluated by the Detection and
Identification module, which detects all the text contained in the
picture. Each OCRed word is transmitted to the Understanding and
Contextualizing module, which is in charge of verifying whether it
might correspond to a unit, a currency, or a color by triggering a
query on the KG to find if there exists a unit with a value on the
qudt:udunitsCode or qudt:ucumCode property that matches the
OCRed text received. In case a unit is found, the KG responds with
the unit’s URI and its description. This is useful for further queries,
since the information for automatically performing unit conversion
can be easily retrieved from the KG later in this way. In the same

11https://www.w3.org/TR/wot-thing-description
12https://github.com/microsoft/MixedRealityToolkit-Unity

Figure 3: Two screenshots from SOCRAR’s AR application.
The image of the left shows an exemplary currency conver-
sion in the SOCRAR system, e.g., for prices in a restaurant
menu. The image on the right shows an exemplary tempera-
ture unit conversion.

way, the QUDT ontology is used to determine if an OCRed text
could be referring to a currency. In this case, the property associ-
ated to a unit of type qudt:CurrencyUnit that the text is checked
against is qudt:expression, which is a three-letter code that rep-
resents each currency (e.g., EUR - Euro; or CHF - Swiss Franc). To
verify colors, we used the SAREF ontology extension13 and added
language tags to the different color instances, which allow for the
translation to other languages.

Once the text is contextualized with the information retrieved
from the KG by the Understanding and Contextualizing module,
the SOCRAR system displays the recognized and validated unit,
currency, or color. In our current implementation, the user may
then click buttons to convert the detected values to another unit,
do a currency conversion, or translate a color to another language.
For up-to-date exchange rates, the system uses a free API14, which
is called with the previously contextualized parameters.

4.2 Carol: Auditing the Operation of a BA
System through a Checklist

Carol, the facility manager, may use the SOCRAR system to verify
the correct operation of a BA system. Carol needs to check a lab-
oratory on the lowest floor of the building. When she is about to
enter the laboratory, she looks at the label placed at the entrance.
The SOCRAR system then takes a picture of the current field of
view and uses the Detection and Identification module to analyze it;
through the Understanding and Contextualizing module, the recog-
nized text is contextualized and, using the semantic representation
of the building specified through the BOT ontology, the correct
machine-understandable representation of the laboratory is found.

Carol brings a printed checklist with her which lists required
environmental values for workplaces (e.g., from labor law) and next
uses the SOCRAR system to verify that these settings hold for the
laboratory. When Carol looks at the physical checklist (Fig. 4-a),
the SOCRAR system’s Detection and Identification module extracts
every checklist item and saves them to create a digital representa-
tion of the checklist – a checklist item in this scenario contains one
or two value-unit pairs (e.g., “The CO2 concentration is max. 1000
ppm." or “The temperature is min. 23.5 °C and max. 26.5 °C."), or a
color (e.g., “The color of the light is white"). Then, theUnderstanding
and Contextualizing module queries the KG to find whether the rec-
ognized characters represent a unit or a color. To this end, the used
13https://saref.etsi.org/saref4envi/v1.1.2
14https://api.exchangerate.host
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(a) (b)

Figure 4: Two screenshots from SOCRAR’s AR application. (a) The input checklist for BA auditing on the left is transferred to a
digital representation using OCR. The blue panel on the right shows the second item from the checklist in AR. (b) An example
of cognitive offloading with SOCRAR showing offset values in AR recognized from a tooling machine’s display.

queries evaluate if there is a match on a unit’s qudt:udunitsCode
or qudt:ucumCode property, or if there is a color match of type
s4envi:Color15 (in any of the supported languages, currently: Eng-
lish, French, German, and Spanish).

After a unit is validated, another request is sent to the KG to
find the device(s) in the current room whose measurements are
expressed in the discovered unit. This is possible since the devices in
the environment expose their W3C WoT TDs which describe their
APIs and hold semantic information on the input/output types
(i.e., the units). Since the device’s TD is related to the semantic
representation of the room it is located in, it is possible to filter
the relevant device to support Carol. Once found, the SOCRAR
system utilizes the information on the device’s TD to construct
and send a request to obtain the current measurements. Given the
contextualized data retrieved from the KG, the SOCRAR system
presents Carol with a holographic panel containing each item on
her checklist along with the recently retrieved device readings.
Carol browses this panel to check off all items on her checklist.

4.3 Diana: SOCRAR for Cognitive Offloading
By extending our solution with the ability to store and later recall
information from the Detection and Identification module, our sys-
tem is furthermore able to support Diana by automatically taking
note of the measured offset values of a newly assembled tool and
feeding these values as input to a milling machine on her request.
Specifically, after Diana has assembled the tool and measured its
offset, the SOCRAR system recognizes the offset values in the right
format from a digital display. The recognized values are then dis-
played in an AR headset (Fig. 4-b), Diana accepts the values as
input and walks to the milling machine. Diana now clicks a button
to send the values to the milling machine’s API (described on the
machine’s TD) to configure it appropriately.

5 DISCUSSION
Our SOCRAR approach and system combines AR, semantics, WoT,
and OCR into a solution that can support humans in their everyday

15PREFIX s4envi: <https://saref.etsi.org/saref4envi/>

interactions with connected devices. It provides in-band mediation
of information sources for users and output-oriented in-band value
retrieval and display. Below we discuss the implemented features,
potential extensions, and shortcomings of SOCRAR.

5.1 Demonstrated Features
A SOCRAR-enabled user interface helps its users to understand
their environment better. Our approach represents a generaliza-
tion of in-band translation services [37] and extends that approach
with semantically grounded information. We demonstrated this
functionality in Section 4.1 (Ben), in which the SOCRAR system is
able to recognize inputs from the surroundings of a user and store
this information in a semantically contextualized form. Hence, our
system does not simply store the string “25 °C” but a semantically
lifted version of this, i.e., the string and the additional information
that this string describes (in this case temperature) in a machine-
readable and machine-understandable form. This means that a user
can discover values, save them, take them with her, and use them
later (e.g., to input them into a physical machine, an API or a virtual
process) unmodified (as shown in Section 4.3) or in modified form
(i.e., as “°F”). This is immediately possible for all conversions that
are already supported by a linked knowledge base (e.g., QUDT).

As demonstrated in Section 4.2, SOCRAR is able to retrieve the
machine-readable and understandable representation of a device’s
programming interface (i.e., through its W3C WoT TD) by evaluat-
ing the recognized units and the user’s context. This means that the
user will no longer have to manually look for mappings. Instead,
the system will automatically match the information in-band and
without disturbing her. In case there is only one candidate mapping,
the system confidence on having found the correct device for a
user’s needs will be high. If multiple matching are available, the
user’s input will be needed.

In the same way as the SOCRAR system today is able to discover
device APIs with matching output types, it can easily be extended
to enable matching based on input types, which would create a
powerful engineering support tool for creating service mashups
with physical devices. Thus, instead of falling back to the manual
modeling of data flows (e.g., through program code, blocks-based
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Figure 5: SOCRAR for configuring tools in a BA system. From
the user’s field of view, a parameter is recognized through
OCR (1) and stored to later be used as an input of a digital
engineering tool (2).

systems, or data-flow-based systems such as Node-RED16), users
could use the SOCRAR approach to integrate virtual and physical
services while taking advantage of its semantic filtering based on
input/output types. In this way, a human engineer will get fewer
alternatives or, ideally, will only need to check and verify system-
proposed mappings.

5.2 Potential Future Applications of SOCRAR
Configuring Tools and Devices: In Section 4.3 we describe how the
Detection and Identification module of SOCRAR is used for cogni-
tive offloading in a machine tooling scenario. Consider a similar
example where an engineer has to provide a boiler’s capacity as an
input parameter for a control program (Fig. 5). With the SOCRAR
system, she would be able to detect the heating capacity from the
boiler’s data sheet and copy it. Then, the Understanding and Con-
textualizing module could semantically discover an empty value
in the engineering tool that has the same unit as the one of the
boiler heating capacity. After a user’s authorization, the SOCRAR
system could paste that value in the appropriate entry, relieving the
engineer from having to remember the long string of characters.

Gaze-Enabled SOCRAR: Previous research on multi-modal HCI
(e.g., using hands, gaze, gestures etc.) has focused on transferring
content among various displays (e.g., mobile, desktop, wall-size, or
HMDs). Turner et al. show how eye and hand movements can be
effectively coordinated in transferring content (i.e., cut, paste, drag,
drop, summon, and cast operations) between a hand-held and a wall-
mounted display [38]. By means of field-of-view tracking, Gluey
can execute similar operations (i.e., copy, paste, selection, color
picking) among distributed and spatially registered displays [32].
Mäkelä et al. use a combination of gaze and mid-air gestures for
transferring content between situated displays and a mobile dis-
play [19]. However, these approaches do not leverage semantic
technologies as we propose with SOCRAR. Furthermore, they de-
tect user’s instant point of interest through eye trackers, which is
a default feature in current AR headsets (e.g., the HL2 we use in
the SOCRAR system). We believe that it is relevant and feasible
to integrate gaze-based features in SOCRAR. Building on previous
literature (e.g., [3, 4, 33]), we plan to explore several research paths
in this direction, such as attention-aware contextualization of IoT
and WoT streams, assessment of users’ awareness and attention to

16https://nodered.org/

objects in their environment, and gaze-contingent user assistance.
While eye tracking today still has several shortcomings that are
specifically relevant outside of laboratory settings [5], we believe
that gaze-enabled SOCRAR would be useful in various industrial
operations such as maintenance, remote support, and training.

5.3 Limitations
The current SOCRAR system can be improved at several ends.While
our OCR engine performed well in our laboratory environment,
minor changes in the lighting conditions often caused poor results.
In more realistic environments, other solutions such as Tesseract
OCR 17 might be more robust. We further observed that the OCR
engine sometimes does not identify all units correctly. Therefore,
we implemented a post-processing step that ensures the correctness
of the units (e.g., "oC" is corrected to "°C"). To extract specific parts
from the OCR’s result, e.g. checklist items, these had to be written
in a predefined format. In a future version of the SOCRAR system,
we plan to make the extraction of specific texts more flexible.

Regarding the KG, we are currently using the QUDT, BOT, TD,
and SAREF ontologies, where we assume that devices expose a
W3CWoT Thing Description. To expand SOCRAR to more complex
use cases that require information of other domains, manual work
on selecting the right ontology and instantiating selected concepts
is necessary. This could be resource-consuming, since ontologists
often need to collaborate with domain experts.

6 CONCLUSIONS
In this paper, we presented SOCRAR, an approach and system that
combines AR, OCR, semantic technologies, and W3C WoT-enabled
environments. SOCRAR is able to detect sets of characters in a user’s
physical environment and contextualize them through a semantic
backend. This is useful in scenarios in which the contextualized
data can be immediately communicated to a user through an AR
interface to improve their understanding of the environment, as
well as, in scenarios in which interacting with connected devices
or even virtual tools is necessary. We demonstrated the feasibility
of SOCRAR through the implementation of three scenarios. As a
next step, we plan to extend SOCRAR to the scenarios described in
Section 5.2 and conduct a user experiment to evaluate the usability
of the proposed system.
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